Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Structure of Diethyl-Phosphonic Acid Anchoring Group Affects the Charge-Separated State on an Iridium(III) Complex Functionalized NiO Surface

2020, Wahyuono, Ruri Agung, Amthor, Sebastian, Müller, Carolin, Rau, Sven, Dietzek, Benjamin

Cyclometalated Iridium(III) complexes, i. e. [Ir(C N)2(dppz)][PF6], bearing either two or four -CH2PO(OH)2 anchoring groups (IrP2dppz or IrP4dppz) are explored as photosensitizers for p-type dye sensitized solar cell (DSSC). The synthetic route is described and the iridium(III) complexes are characterized with respect to their electrochemical and photophysical properties. The modified anchoring ligand geometry exploited in this work not only alters the electronic nature of the complex (that is by destabilizing the LUMO energetically) but more importantly improves the grafting ability of the complex towards the NiO surface. The photoinduced long-lived charge separated state (CSS) at the NiO|IrPxdppz interface is of a different nature comparing the two complexes. For IrP2dppz and IrP4dppz the electron density of the CSS dominantly resides on the dppz and the C N ligand, respectively. The stability of the CSS can be correlated to the solar cell performance in NiO-based p-DSSCs, which yield conversion efficiencies which are among the highest in the class of iridium(III) complexes developed for p-DSSCs. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

Self-Assembled Graphene/MWCNT Bilayers as Platinum- Free Counter Electrode in Dye-Sensitized Solar Cells

2019, Wahyuono, Ruri Agung, Jia, Guobin, Plentz, Jonathan, Dellith, Andrea, Dellith, Jan, Herrmann-Westendorf, Felix, Seyring, Martin, Presselt, Martin, Andrä, Gudrun, Rettenmayr, Markus, Dietzek, Benjamin

We describe the preparation and properties of bilayers of graphene- and multi-walled carbon nanotubes (MWCNTs) as an alternative to conventionally used platinum-based counter electrode for dye-sensitized solar cells (DSSC). The counter electrodes were prepared by a simple and easy-to-implement double self-assembly process. The preparation allows for controlling the surface roughness of electrode in a layer-by-layer deposition. Annealing under N2 atmosphere improves the electrode's conductivity and the catalytic activity of graphene and MWCNTs to reduce the I3 − species within the electrolyte of the DSSC. The performance of different counter-electrodes is compared for ZnO photoanode-based DSSCs. Bilayer electrodes show higher power conversion efficiencies than monolayer graphene electrodes or monolayer MWCNTs electrodes. The bilayer graphene (bottom)/MWCNTs (top) counter electrode-based DSSC exhibits a maximum power conversion efficiency of 4.1 % exceeding the efficiency of a reference DSSC with a thin film platinum counter electrode (efficiency of 3.4 %). In addition, the double self-assembled counter electrodes are mechanically stable, which enables their recycling for DSSCs fabrication without significant loss of the solar cell performance. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.