Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Investigating light-induced processes in covalent dye-catalyst assemblies for hydrogen production

2020, Bold, Sebastian, Straistari, Tatiana, Muñoz-García, Ana B., Pavone, Michele, Artero, Vincent, Chavarot-Kerlidou, Murielle, Dietzek, Benjamin

The light-induced processes occurring in two dye-catalyst assemblies for light-driven hydrogen production were investigated by ultrafast transient absorption spectroscopy. These dyads consist of a push-pull organic dye based on a cyclopenta[1,2-b:5,4-b’]dithiophene (CPDT) bridge, covalently linked to two different H2-evolving cobalt catalysts. Whatever the nature of the latter, photoinduced intramolecular electron transfer from the excited state of the dye to the catalytic center was never observed. Instead, and in sharp contrast to the reference dye, a fast intersystem crossing (ISC) populates a long-lived triplet excited state, which in turn non-radiatively decays to the ground state. This study thus shows how the interplay of different structures in a dye-catalyst assembly can lead to unexpected excited state behavior and might open up new possibilities in the area of organic triplet sensitizers. More importantly, a reductive quenching mechanism with an external electron donor must be considered to drive hydrogen production with these dye-catalyst assemblies. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Photophysics of BODIPY dyes as readily designable photosensitisers in light-driven proton reduction

2017, Dura, Laura, Wächtler, Maria, Kupfer, Stephan, Kübel, Joachim, Ahrens, Johannes, Höfler, Sebastian, Bröring, Martin, Dietzek, Benjamin, Beweries, Torsten

A series of boron dipyrromethene (BODIPY) dyes was tested as photosensitisers for light-driven hydrogen evolution in combination with the complex [Pd(PPh3)Cl2]2 as a source for catalytically-active Pd nanoparticles and triethylamine as a sacrificial electron donor. In line with earlier reports, halogenated dyes showed significantly higher hydrogen production activity. All BODIPYs were fully characterised using stationary absorption and emission spectroscopy. Time-resolved spectroscopic investigations on meso-mesityl substituted compounds revealed that reduction of the photo-excited BODIPY by the sacrificial agent occurs from an excited singlet state, while, in halogenated species, long-lived triplet states are present, determining electron transfer processes from the sacrificial agent. Quantum chemical calculations performed at the time-dependent density functional level of theory indicate that the differences in the photocatalytic performance of the present series of dyes can be correlated to the varying efficiency of intersystem crossing in non-halogenated and halogenated species and not to alterations in the energy levels introduced upon substitution.

Loading...
Thumbnail Image
Item

Resonance Raman Spectro-Electrochemistry to Illuminate Photo-Induced Molecular Reaction Pathways

2019, Zedler, Linda, Krieck, Sven, Kupfer, Stephan, Dietzek, Benjamin

Electron transfer reactions play a key role for artificial solar energy conversion, however, the underlying reaction mechanisms and the interplay with the molecular structure are still poorly understood due to the complexity of the reaction pathways and ultrafast timescales. In order to investigate such light-induced reaction pathways, a new spectroscopic tool has been applied, which combines UV-vis and resonance Raman spectroscopy at multiple excitation wavelengths with electrochemistry in a thin-layer electrochemical cell to study [RuII(tbtpy)2]2+ (tbtpy = tri-tert-butyl-2,2′:6′,2′′-terpyridine) as a model compound for the photo-activated electron donor in structurally related molecular and supramolecular assemblies. The new spectroscopic method substantiates previous suggestions regarding the reduction mechanism of this complex by localizing photo-electrons and identifying structural changes of metastable intermediates along the reaction cascade. This has been realized by monitoring selective enhancement of Raman-active vibrations associated with structural changes upon electronic absorption when tuning the excitation wavelength into new UV-vis absorption bands of intermediate structures. Additional interpretation of shifts in Raman band positions upon reduction with the help of quantum chemical calculations provides a consistent picture of the sequential reduction of the individual terpyridine ligands, i.e., the first reduction results in the monocation [(tbtpy)Ru(tbtpy•)]+, while the second reduction generates [(tbtpy•)Ru(tbtpy•)]0 of triplet multiplicity. Therefore, the combination of this versatile spectro-electrochemical tool allows us to deepen the fundamental understanding of light-induced charge transfer processes in more relevant and complex systems.