Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Photophysics of BODIPY dyes as readily designable photosensitisers in light-driven proton reduction

2017, Dura, Laura, Wächtler, Maria, Kupfer, Stephan, Kübel, Joachim, Ahrens, Johannes, Höfler, Sebastian, Bröring, Martin, Dietzek, Benjamin, Beweries, Torsten

A series of boron dipyrromethene (BODIPY) dyes was tested as photosensitisers for light-driven hydrogen evolution in combination with the complex [Pd(PPh3)Cl2]2 as a source for catalytically-active Pd nanoparticles and triethylamine as a sacrificial electron donor. In line with earlier reports, halogenated dyes showed significantly higher hydrogen production activity. All BODIPYs were fully characterised using stationary absorption and emission spectroscopy. Time-resolved spectroscopic investigations on meso-mesityl substituted compounds revealed that reduction of the photo-excited BODIPY by the sacrificial agent occurs from an excited singlet state, while, in halogenated species, long-lived triplet states are present, determining electron transfer processes from the sacrificial agent. Quantum chemical calculations performed at the time-dependent density functional level of theory indicate that the differences in the photocatalytic performance of the present series of dyes can be correlated to the varying efficiency of intersystem crossing in non-halogenated and halogenated species and not to alterations in the energy levels introduced upon substitution.

Loading...
Thumbnail Image
Item

Covalent Linkage of BODIPY-Photosensitizers to Anderson-Type Polyoxometalates Using CLICK Chemistry

2021, Cetindere, Seda, Clausing, Simon T., Anjass, Montaha, Luo, Yusen, Kupfer, Stephan, Dietzek, Benjamin, Streb, Carsten

The covalent attachment of molecular photosensitizers (PS) to polyoxometalates (POMs) opens new pathways to PS-POM dyads for light-driven charge-transfer and charge-storage. Here, we report a synthetic route for the covalent linkage of BODIPY-dyes to Anderson-type polyoxomolybdates by using CLICK chemistry (i. e. copper-catalyzed azide-alkyne cycloaddition, CuAAC). Photophysical properties of the dyad were investigated by combined experimental and theoretical methods and highlight the role of both sub-components for the charge-separation properties. The study demonstrates how CLICK chemistry can be used for the versatile linkage of organic functional units to molecular metal oxide clusters. © 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH