Search Results

Now showing 1 - 2 of 2
  • Item
    Application of adiabatic pulses for magnetic Resonance Sounding – Pulse shapes and resolution
    (Amsterdam [u.a.] : Elsevier Science, 2020) Dlugosch, Raphael; Müller-Petke, Mike
    Magnetic Resonance Sounding (MRS) can image the spatial distribution of hydrologically relevant parameters in in the subsurface. However, the application of MRS is often limited by its low signal-to-noise ratio. The use of adiabatic excitation pulses show promising features to overcome this limitation. In this work, we study practical considerations when applying adiabatic pulses for MRS, i.e. calculation of the sensitivity kernel for varying pulse shapes and vertical resolution. The pulse shape is crucial for the performance of adiabatic pulses. We investigate the shapes of adiabatic pulses recorded during a MRS and observe small systematic deviations from the theoretical predicted pulse shape and variations between different pulse strengths. We show that the overall impact on the obtained sounding curve and inversion result was small. This enables to limit the time consuming modelling of the spin dynamic to one representative pulse shape, which significantly speeds up the calculation of the sensitivity kernel, necessary for the interpretation of MRS. Additionally, we show that on-resonance excitation generally outperforms adiabatic excitation concerning vertical resolution and depth of investigation (both up to a factor of two). This is true for a wide range of noise conditions. For a very shallow depth interval compared to the loop size, however, adiabatic excitation features improved imaging capabilities. © 2020 The Authors
  • Item
    Feasibility study on prepolarized surface nuclear magnetic resonance for soil moisture measurements
    (Hoboken, NJ : Wiley, 2021) Hiller, Thomas; Costabel, Stephan; Radić, Tino; Dlugosch, Raphael; Müller‐Petke, Mike
    In the past few years, small-scale (2 m) prepolarized surface nuclear magnetic resonance (SNMR) has gained increasing interest in the research community. As recent studies demonstrated, the application of a strong prepolarization field enhances the SNMR signal of coils with a footprint <1 m2 up to a level that even enables investigations in urban areas. In particular, it is expected that this noninvasive method provides the soil moisture distribution in the upper 2 m of the subsurface in the near future. However, until now all field experiments have been carried out on water reservoirs only, in an approach to test and implement this rather new technique into the field of SNMR applications. We present the first prepolarized SNMR measurement on a real soil and demonstrate the general feasibility of this technique to qualitatively and quantitatively detect soil moisture in the upper first 0.5 m. Our soil moisture measurements are validated by independent time domain reflectometry data. To complement the field experiments with numerical simulations, we adapted the underlying SNMR spin dynamics simulations and account for prepolarization switch-off effects in the forward modeling of the SNMR excitation.