Search Results

Now showing 1 - 5 of 5
  • Item
    Measurement report: Balloon-borne in situ profiling of Saharan dust over Cyprus with the UCASS optical particle counter
    (Katlenburg-Lindau : European Geosciences Union, 2021) Kezoudi, Maria; Tesche, Matthias; Smith, Helen; Tsekeri, Alexandra; Baars, Holger; Dollner, Maximilian; Estellés, Víctor; Bühl, Johannes; Weinzierl, Bernadett; Ulanowski, Zbigniew; Müller, Detlef; Amiridis, Vassilis
    This paper presents measurements of mineral dust concentration in the diameter range from 0.4 to 14.0 µm with a novel balloon-borne optical particle counter, the Universal Cloud and Aerosol Sounding System (UCASS). The balloon launches were coordinated with ground-based active and passive remote-sensing observations and airborne in situ measurements with a research aircraft during a Saharan dust outbreak over Cyprus from 20 to 23 April 2017. The aerosol optical depth at 500 nm reached values up to 0.5 during that event over Cyprus, and particle number concentrations were as high as 50 cm−3 for the diameter range between 0.8 and 13.9 µm. Comparisons of the total particle number concentration and the particle size distribution from two cases of balloon-borne measurements with aircraft observations show reasonable agreement in magnitude and shape despite slight mismatches in time and space. While column-integrated size distributions from balloon-borne measurements and ground-based remote sensing show similar coarse-mode peak concentrations and diameters, they illustrate the ambiguity related to the missing vertical information in passive sun photometer observations. Extinction coefficient inferred from the balloon-borne measurements agrees with those derived from coinciding Raman lidar observations at height levels with particle number concentrations smaller than 10 cm−3 for the diameter range from 0.8 to 13.9 µm. An overestimation of the UCASS-derived extinction coefficient of a factor of 2 compared to the lidar measurement was found for layers with particle number concentrations that exceed 25 cm−3, i.e. in the centre of the dust plume where particle concentrations were highest. This is likely the result of a variation in the refractive index and the shape and size dependency of the extinction efficiency of dust particles along the UCASS measurements. In the future, profile measurements of the particle number concentration and particle size distribution with the UCASS could provide a valuable addition to the measurement capabilities generally used in field experiments that are focussed on the observation of coarse aerosols and clouds.
  • Item
    Influx of African biomass burning aerosol during the Amazonian dry season through layered transatlantic transport of black carbon-rich smoke
    (Katlenburg-Lindau : EGU, 2020) Holanda, Bruna A.; Pöhlker, Mira L.; Walter, David; Saturno, Jorge; Sörgel, Matthias; Ditas, Jeannine; Ditas, Florian; Schulz, Christiane; Aurélio Franco, Marco; Wang, Qiaoqiao; Donth, Tobias; Artaxo, Paulo; Barbosa, Henrique M.J.; Borrmann, Stephan; Braga, Ramon; Brito, Joel; Cheng, Yafang; Dollner, Maximilian; Kaiser, JohannesW.; Klimach, Thomas; Knote, Christoph; Krüger, Ovid O.; Fütterer, Daniel; Lavrič, Jošt V.; Ma, Nan; Machado, Luiz A.T.; Ming, Jing; Morais, Fernando G.; Paulsen, Hauke; Sauer, Daniel; Schlager, Hans; Schneider, Johannes; Su, Hang; Weinzierl, Bernadett; Walser, Adrian; Wendisch, Manfred; Ziereis, Helmut; Zöger, Martin; Pöschl, Ulrich; Andreae, Meinrat O.; Pöhlker, Christopher
    Black carbon (BC) aerosols influence the Earth's atmosphere and climate, but their microphysical properties, spatiotemporal distribution, and long-range transport are not well constrained. This study presents airborne observations of the transatlantic transport of BC-rich African biomass burning (BB) smoke into the Amazon Basin using a Single Particle Soot Photometer (SP2) as well as several complementary techniques. We base our results on observations of aerosols and trace gases off the Brazilian coast onboard the HALO (High Altitude and LOng range) research aircraft during the ACRIDICON-CHUVA campaign in September 2014. During flight AC19 over land and ocean at the northeastern coastline of the Amazon Basin, we observed a BCrich layer at ∼ 3:5 km altitude with a vertical extension of ∼ 0:3 km. Backward trajectories suggest that fires in African grasslands, savannas, and shrublands were the main source of this pollution layer and that the observed BB smoke had undergone more than 10 d of atmospheric transport and aging over the South Atlantic before reaching the Amazon Basin. The aged smoke is characterized by a dominant accumulation mode, centered at about 130 nm, with a particle concentration of Nacc D 850±330 cm-3. The rBC particles account for ∼ 15 % of the submicrometer aerosol mass and ∼ 40 % of the total aerosol number concentration. This corresponds to a mass concentration range from 0.5 to 2 μ g m-3 (1st to 99th percentiles) and a number concentration range from 90 to 530 cm-3. Along with rBC, high cCO (150 ± 30 ppb) and cO3 (56 ± 9 ppb) mixing ratios support the biomass burning origin and pronounced photochemical aging of this layer. Upon reaching the Amazon Basin, it started to broaden and to subside, due to convective mixing and entrainment of the BB aerosol into the boundary layer. Satellite observations show that the transatlantic transport of pollution layers is a frequently occurring process, seasonally peaking in August/September. By analyzing the aircraft observations together with the long-term data from the Amazon Tall Tower Observatory (ATTO), we found that the transatlantic transport of African BB smoke layers has a strong impact on the northern and central Amazonian aerosol population during the BBinfluenced season (July to December). In fact, the early BB season (July to September) in this part of the Amazon appears to be dominated by African smoke, whereas the later BB season (October to December) appears to be dominated by South American fires. This dichotomy is reflected in pronounced changes in aerosol optical properties such as the single scattering albedo (increasing from 0.85 in August to 0.90 in November) and the BC-to-CO enhancement ratio (decreasing from 11 to 6 ng m-3 ppb-1). Our results suggest that, despite the high fraction of BC particles, the African BB aerosol acts as efficient cloud condensation nuclei (CCN), with potentially important implications for aerosol-cloud interactions and the hydrological cycle in the Amazon. © 2020 Author(s).
  • Item
    Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin
    (Katlenburg-Lindau : EGU, 2018) Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel; Holanda, Bruna Amorim; Artaxo, Paulo; Barbosa, Henrique M. J.; Borrmann, Stephan; Cecchini, Micael A.; Costa, Anja; Dollner, Maximilian; Fütterer, Daniel; Järvinen, Emma; Jurkat, Tina; Klimach, Thomas; Konemann, Tobias; Knote, Christoph; Krämer, Martina; Krisna, Trismono; Machado, Luiz A. T.; Mertes, Stephan; Minikin, Andreas; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; Rosenfeld, Daniel; Sauer, Daniel; Schlager, Hans; Schnaiter, Martin; Schneider, Johannes; Schulz, Christiane; Spanu, Antonio; Sperling, Vinicius B.; Voigt, Christiane; Walser, Adrian; Wang, Jian; Weinzierl, Bernadett; Wendisch, Manfred; Ziereis, Helmut
    Airborne observations over the Amazon Basin showed high aerosol particle concentrations in the upper troposphere (UT) between 8 and 15ĝ€km altitude, with number densities (normalized to standard temperature and pressure) often exceeding those in the planetary boundary layer (PBL) by 1 or 2 orders of magnitude. The measurements were made during the German–Brazilian cooperative aircraft campaign ACRIDICON–CHUVA, where ACRIDICON stands for Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems and CHUVA is the acronym for Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (global precipitation measurement), on the German High Altitude and Long Range Research Aircraft (HALO). The campaign took place in September–October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with atmospheric trace gases, aerosol particles, and atmospheric radiation.

    Aerosol enhancements were observed consistently on all flights during which the UT was probed, using several aerosol metrics, including condensation nuclei (CN) and cloud condensation nuclei (CCN) number concentrations and chemical species mass concentrations. The UT particles differed sharply in their chemical composition and size distribution from those in the PBL, ruling out convective transport of combustion-derived particles from the boundary layer (BL) as a source. The air in the immediate outflow of deep convective clouds was depleted of aerosol particles, whereas strongly enhanced number concentrations of small particles (< 90ĝ€nm diameter) were found in UT regions that had experienced outflow from deep convection in the preceding 5–72ĝ€h. We also found elevated concentrations of larger (> 90ĝ€nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN.

    Our findings suggest a conceptual model, where production of new aerosol particles takes place in the continental UT from biogenic volatile organic material brought up by deep convection and converted to condensable species in the UT. Subsequently, downward mixing and transport of upper tropospheric aerosol can be a source of particles to the PBL, where they increase in size by the condensation of biogenic volatile organic compound (BVOC) oxidation products. This may be an important source of aerosol particles for the Amazonian PBL, where aerosol nucleation and new particle formation have not been observed. We propose that this may have been the dominant process supplying secondary aerosol particles in the pristine atmosphere, making clouds the dominant control of both removal and production of atmospheric particles.
  • Item
    Estimation of dust related ice nucleating particles in the atmosphere: Comparison of profiling and in-situ measurements
    (Les Ulis : EDP Sciences, 2019) Haarig, Moritz; Ansmann, Albert; Walser, Adrian; Baars, Holger; Urbanneck, Claudia; Weinzierl, Bernadett; Schöberl, Manuel; Dollner, Maximilian; Mamouri, Rodanthi; Althausen, Dietrich
    Vertical profiles of number concentrations of dust particles relevant for ice nucleation in clouds are derived from lidar measurements. The results are compared to coincidental airborne in-situ measurements of particle number and surface area concentrations in the dust layer. The observations were performed in long-range transported Saharan dust at Barbados and Asian dust at Cyprus. The Asian dust data analysis is ongoing. A comparison of Asian and Saharan dust will be given at the conference. Concentrations of ice nucleating particles in the order of 10 to 1000 per cm-3 in the dust layer are derived for a temperature of-25°C at Barbados. The method can be used to continuously monitor the concentration of ice nucleating dust particles vertically resolved from lidar measurements. © 2019 The Authors, published by EDP Sciences.
  • Item
    Profiles of cloud condensation nuclei, dust mass concentration, and ice-nucleating-particle-relevant aerosol properties in the Saharan Air Layer over Barbados from polarization lidar and airborne in situ measurements
    (Katlenburg-Lindau : EGU, 2019) Haarig, Moritz; Walser, Adrian; Ansmann, Albert; Dollner, Maximilian; Althausen, Dietrich; Sauer, Daniel; Farrell, David; Weinzierl, Bernadett
    The present study aims to evaluate lidar retrievals of cloud-relevant aerosol properties by using polarization lidar and coincident airborne in situ measurements in the Saharan Air Layer (SAL) over the Barbados region. Vertical profiles of the number concentration of cloud condensation nuclei (CCN), large particles (diameter d > 500 nm), surface area, mass, and ice-nucleating particle (INP) concentration are derived from the lidar measurements and compared with CCN concentrations and the INP-relevant aerosol properties measured in situ with aircraft. The measurements were performed in the framework of the Saharan Aerosol Longrange Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in summer 2013. The CCN number concentrations derived from lidar observations were up to a factor of 2 higher than the ones measured in situ aboard the research aircraft Falcon. Possible reasons for the difference are discussed. The number concentration of particles with a dry radius of more than 250 nm and the surface-area concentration obtained from the lidar observations and used as input for the INP parameterizations agreed well (< 30 %-50 % deviation) with the aircraft measurements. In a pronounced lofted dust layer during summer (10 July 2013), the lidar retrieval yielded 100-300 CCN per cubic centimeter at 0.2 % water supersaturation and 10-200 INPs per liter at-25?C. Excellent agreement was also obtained in the comparison of mass concentration profiles. During the SALTRACE winter campaign (March 2014), the dust layer from Africa was mixed with smoke particles which dominated the CCN number concentration. This example highlights the unique lidar potential to separate smoke and dust contributions to the CCN reservoir and thus to identify the sensitive role of smoke in trade wind cumuli developments over the tropical Atlantic during the winter season. © 2017 Georg Thieme Verlag. All rights reserved.