Search Results

Now showing 1 - 2 of 2
  • Item
    Perovskite Origami for Programmable Microtube Lasing
    (Weinheim : Wiley-VCH, 2021) Dong, Haiyun; Saggau, Christian Niclaas; Zhu, Minshen; Liang, Jie; Duan, Shengkai; Wang, Xiaoyu; Tang, Hongmei; Yin, Yin; Wang, Xiaoxia; Wang, Jiawei; Zhang, Chunhuan; Zhao, Yong Sheng; Ma, Libo; Schmidt, Oliver G.
    Metal halide perovskites are promising materials for optoelectronic and photonic applications ranging from photovoltaics to laser devices. However, current perovskite devices are constrained to simple low-dimensional structures suffering from limited design freedom and holding up performance improvement and functionality upgrades. Here, a micro-origami technique is developed to program 3D perovskite microarchitectures toward a new type of microcavity laser. The design flexibility in 3D supports not only outstanding laser performance such as low threshold, tunable output, and high stability but also yields new functionalities like 3D confined mode lasing and directional emission in, for example, laser “array-in-array” systems. The results represent a significant step forward toward programmable microarchitectures that take perovskite optoelectronics and photonics into the 3D era. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH.
  • Item
    Fast-Response Micro-Phototransistor Based on MoS2/Organic Molecule Heterojunction
    (Basel : MDPI, 2023) Andleeb, Shaista; Wang, Xiaoyu; Dong, Haiyun; Valligatla, Sreeramulu; Saggau, Christian Niclaas; Ma, Libo; Schmidt, Oliver G.; Zhu, Feng
    Over the past years, molybdenum disulfide (MoS2) has been the most extensively studied two-dimensional (2D) semiconductormaterial. With unique electrical and optical properties, 2DMoS2 is considered to be a promising candidate for future nanoscale electronic and optoelectronic devices. However, charge trapping leads to a persistent photoconductance (PPC), hindering its use for optoelectronic applications. To overcome these drawbacks and improve the optoelectronic performance, organic semiconductors (OSCs) are selected to passivate surface defects, tune the optical characteristics, and modify the doping polarity of 2D MoS2. Here, we demonstrate a fast photoresponse in multilayer (ML) MoS2 by addressing a heterojunction interface with vanadylphthalocyanine (VOPc) molecules. The MoS2/VOPc van der Waals interaction that has been established encourages the PPC effect in MoS2 by rapidly segregating photo-generated holes, which move away from the traps of MoS2 toward the VOPc molecules. The MoS2/VOPc phototransistor exhibits a fast photo response of less than 15 ms for decay and rise, which is enhanced by 3ordersof magnitude in comparison to that of a pristine MoS2-based phototransistor (seconds to tens of seconds). This work offers a means to realize high-performance transition metal dichalcogenide (TMD)-based photodetection with a fast response speed.