Search Results

Now showing 1 - 7 of 7
  • Item
    Local difference measures between complex networks for dynamical system model evaluation
    (San Francisco, CA : Public Library of Science (PLoS), 2015) Lange, S.; Donges, J.F.; Volkholz, J.; Kurths, J.
  • Item
    When optimization for governing human-environment tipping elements is neither sustainable nor safe
    (London : Nature Publishing Group, 2018) Barfuss, W.; Donges, J.F.; Lade, S.J.; Kurths, J.
    Optimizing economic welfare in environmental governance has been criticized for delivering short-term gains at the expense of long-term environmental degradation. Different from economic optimization, the concepts of sustainability and the more recent safe operating space have been used to derive policies in environmental governance. However, a formal comparison between these three policy paradigms is still missing, leaving policy makers uncertain which paradigm to apply. Here, we develop a better understanding of their interrelationships, using a stylized model of human-environment tipping elements. We find that no paradigm guarantees fulfilling requirements imposed by another paradigm and derive simple heuristics for the conditions under which these trade-offs occur. We show that the absence of such a master paradigm is of special relevance for governing real-world tipping systems such as climate, fisheries, and farming, which may reside in a parameter regime where economic optimization is neither sustainable nor safe.
  • Item
    Identifying causal gateways and mediators in complex spatio-temporal systems
    (London : Nature Publishing Group, 2015) Runge, J.; Petoukhov, V.; Donges, J.F.; Hlinka, J.; Jajcay, N.; Vejmelka, M.; Hartman, D.; Marwan, N.; Paluš, M.; Kurths, J.
  • Item
    Non-linear regime shifts in Holocene Asian monsoon variability: Potential impacts on cultural change and migratory patterns
    (MĂĽnchen : European Geopyhsical Union, 2015) Donges, J.F.; Donner, R.V.; Marwan, N.; Breitenbach, S.F.M.; Rehfeld, K.; Kurths, J.
    The Asian monsoon system is an important tipping element in Earth's climate with a large impact on human societies in the past and present. In light of the potentially severe impacts of present and future anthropogenic climate change on Asian hydrology, it is vital to understand the forcing mechanisms of past climatic regime shifts in the Asian monsoon domain. Here we use novel recurrence network analysis techniques for detecting episodes with pronounced non-linear changes in Holocene Asian monsoon dynamics recorded in speleothems from caves distributed throughout the major branches of the Asian monsoon system. A newly developed multi-proxy methodology explicitly considers dating uncertainties with the COPRA (COnstructing Proxy Records from Age models) approach and allows for detection of continental-scale regime shifts in the complexity of monsoon dynamics. Several epochs are characterised by non-linear regime shifts in Asian monsoon variability, including the periods around 8.5–7.9, 5.7–5.0, 4.1–3.7, and 3.0–2.4 ka BP. The timing of these regime shifts is consistent with known episodes of Holocene rapid climate change (RCC) and high-latitude Bond events. Additionally, we observe a previously rarely reported non-linear regime shift around 7.3 ka BP, a timing that matches the typical 1.0–1.5 ky return intervals of Bond events. A detailed review of previously suggested links between Holocene climatic changes in the Asian monsoon domain and the archaeological record indicates that, in addition to previously considered longer-term changes in mean monsoon intensity and other climatic parameters, regime shifts in monsoon complexity might have played an important role as drivers of migration, pronounced cultural changes, and the collapse of ancient human societies.
  • Item
    Identification of dynamical transitions in marine palaeoclimate records by recurrence network analysis
    (Göttingen : Copernicus GmbH, 2011) Donges, J.F.; Donner, R.V.; Rehfeld, K.; Marwan, N.; Trauth, M.H.; Kurths, J.
    The analysis of palaeoclimate time series is usually affected by severe methodological problems, resulting primarily from non-equidistant sampling and uncertain age models. As an alternative to existing methods of time series analysis, in this paper we argue that the statistical properties of recurrence networks - a recently developed approach - are promising candidates for characterising the system's nonlinear dynamics and quantifying structural changes in its reconstructed phase space as time evolves. In a first order approximation, the results of recurrence network analysis are invariant to changes in the age model and are not directly affected by non-equidistant sampling of the data. Specifically, we investigate the behaviour of recurrence network measures for both paradigmatic model systems with non-stationary parameters and four marine records of long-term palaeoclimate variations. We show that the obtained results are qualitatively robust under changes of the relevant parameters of our method, including detrending, size of the running window used for analysis, and embedding delay. We demonstrate that recurrence network analysis is able to detect relevant regime shifts in synthetic data as well as in problematic geoscientific time series. This suggests its application as a general exploratory tool of time series analysis complementing existing methods.
  • Item
    A matrix clustering method to explore patterns of land-cover transitions in satellite-derived maps of the Brazilian Amazon
    (Göttingen : Copernicus GmbH, 2017) Müller-Hansen, F.; Cardoso, M.F.; Dalla-Nora, E.L.; Donges, J.F.; Heitzig, J.; Kurths, J.; Thonicke, K.
    Changes in land-use systems in tropical regions, including deforestation, are a key challenge for global sustainability because of their huge impacts on green-house gas emissions, local climate and biodiversity. However, the dynamics of land-use and land-cover change in regions of frontier expansion such as the Brazilian Amazon are not yet well understood because of the complex interplay of ecological and socioeconomic drivers. In this paper, we combine Markov chain analysis and complex network methods to identify regimes of land-cover dynamics from land-cover maps (TerraClass) derived from high-resolution (30ĝ€m) satellite imagery. We estimate regional transition probabilities between different land-cover types and use clustering analysis and community detection algorithms on similarity networks to explore patterns of dominant land-cover transitions. We find that land-cover transition probabilities in the Brazilian Amazon are heterogeneous in space, and adjacent subregions tend to be assigned to the same clusters. When focusing on transitions from single land-cover types, we uncover patterns that reflect major regional differences in land-cover dynamics. Our method is able to summarize regional patterns and thus complements studies performed at the local scale.
  • Item
    Spatial patterns of linear and nonparametric long-term trends in Baltic sea-level variability
    (Göttingen : Copernicus GmbH, 2012) Donner, R.V.; Ehrcke, R.; Barbosa, S.M.; Wagner, J.; Donges, J.F.; Kurths, J.
    The study of long-term trends in tide gauge data is important for understanding the present and future risk of changes in sea-level variability for coastal zones, particularly with respect to the ongoing debate on climate change impacts. Traditionally, most corresponding analyses have exclusively focused on trends in mean sea-level. However, such studies are not able to provide sufficient information about changes in the full probability distribution (especially in the more extreme quantiles). As an alternative, in this paper we apply quantile regression (QR) for studying changes in arbitrary quantiles of sea-level variability. For this purpose, we chose two different QR approaches and discuss the advantages and disadvantages of different settings. In particular, traditional linear QR poses very restrictive assumptions that are often not met in reality. For monthly data from 47 tide gauges from along the Baltic Sea coast, the spatial patterns of quantile trends obtained in linear and nonparametric (spline-based) frameworks display marked differences, which need to be understood in order to fully assess the impact of future changes in sea-level variability on coastal areas. In general, QR demonstrates that the general variability of Baltic sea-level has increased over the last decades. Linear quantile trends estimated for sliding windows in time reveal a wide-spread acceleration of trends in the median, but only localised changes in the rates of changes in the lower and upper quantiles.