Search Results

Now showing 1 - 6 of 6
  • Item
    Towards representing human behavior and decision making in Earth system models - An overview of techniques and approaches
    (München : European Geopyhsical Union, 2017) Müller-Hansen, Finn; Schlüter, Maja; Mäs, Michael; Donges, Jonathan F.; Kolb, Jakob J.; Thonicke, Kirsten; Heitzig, Jobst
    Today, humans have a critical impact on the Earth system and vice versa, which can generate complex feedback processes between social and ecological dynamics. Integrating human behavior into formal Earth system models (ESMs), however, requires crucial modeling assumptions about actors and their goals, behavioral options, and decision rules, as well as modeling decisions regarding human social interactions and the aggregation of individuals' behavior. Here, we review existing modeling approaches and techniques from various disciplines and schools of thought dealing with human behavior at different levels of decision making. We demonstrate modelers' often vast degrees of freedom but also seek to make modelers aware of the often crucial consequences of seemingly innocent modeling assumptions. After discussing which socioeconomic units are potentially important for ESMs, we compare models of individual decision making that correspond to alternative behavioral theories and that make diverse modeling assumptions about individuals' preferences, beliefs, decision rules, and foresight. We review approaches to model social interaction, covering game theoretic frameworks, models of social influence, and network models. Finally, we discuss approaches to studying how the behavior of individuals, groups, and organizations can aggregate to complex collective phenomena, discussing agent-based, statistical, and representative-agent modeling and economic macro-dynamics. We illustrate the main ingredients of modeling techniques with examples from land-use dynamics as one of the main drivers of environmental change bridging local to global scales.
  • Item
    Modelling nonlinear dynamics of interacting tipping elements on complex networks: the PyCascades package
    (Berlin ; Heidelberg : Springer, 2021) Wunderling, Nico; Krönke, Jonathan; Wohlfarth, Valentin; Kohler, Jan; Heitzig, Jobst; Staal, Arie; Willner, Sven; Winkelmann, Ricarda; Donges, Jonathan F.
    Tipping elements occur in various systems such as in socio-economics, ecology and the climate system. In many cases, the individual tipping elements are not independent of each other, but they interact across scales in time and space. To model systems of interacting tipping elements, we here introduce the PyCascades open source software package for studying interacting tipping elements (https://doi.org/10.5281/zenodo.4153102). PyCascades is an object-oriented and easily extendable package written in the programming language Python. It allows for investigating under which conditions potentially dangerous cascades can emerge between interacting dynamical systems, with a focus on tipping elements. With PyCascades it is possible to use different types of tipping elements such as double-fold and Hopf types and interactions between them. PyCascades can be applied to arbitrary complex network structures and has recently been extended to stochastic dynamical systems. This paper provides an overview of the functionality of PyCascades by introducing the basic concepts and the methodology behind it. In the end, three examples are discussed, showing three different applications of the software package. First, the moisture recycling network of the Amazon rainforest is investigated. Second, a model of interacting Earth system tipping elements is discussed. And third, the PyCascades modelling framework is applied to a global trade network.
  • Item
    Grounding Social Foundations for Integrated Assessment Models of Climate Change
    (Hoboken, NJ : Wiley-Blackwell, 2020) Mathias, Jean‐Denis; Debeljak, Marko; Deffuant, Guillaume; Diemer, Arnaud; Dierickx, Florian; Donges, Jonathan F.; Gladkykh, Ganna; Heitzig, Jobst; Holtz, Georg; Obergassel, Wolfgang; Pellaud, Francine; Sánchez, Angel; Trajanov, Aneta; Videira, Nuno
    Integrated assessment models (IAMs) are commonly used by decision makers in order to derive climate policies. IAMs are currently based on climate-economics interactions, whereas the role of social system has been highlighted to be of prime importance on the implementation of climate policies. Beyond existing IAMs, we argue that it is therefore urgent to increase efforts in the integration of social processes within IAMs. For achieving such a challenge, we present some promising avenues of research based on the social branches of economics. We finally present the potential implications yielded by such social IAMs. ©2020. The Authors. Earth's Future published by Wiley Periodicals LLC on behalf of American Geophysical Union
  • Item
    Earth system modeling with endogenous and dynamic human societies: the copan:CORE open World–Earth modeling framework
    (Göttingen : Copernicus Publ., 2020) Donges, Jonathan F.; Heitzig, Jobst; Barfuss, Wolfram; Wiedermann, Marc; Kassel, Johannes A.; Kittel, Tim; Kolb, Jakob J.; Kolster, Till; Müller-Hansen, Finn; Otto, Ilona M.; Zimmerer, Kilian B.; Lucht, Wolfgang
    Analysis of Earth system dynamics in the Anthropocene requires explicitly taking into account the increasing magnitude of processes operating in human societies, their cultures, economies and technosphere and their growing feedback entanglement with those in the physical, chemical and biological systems of the planet. However, current state-of-the-art Earth system models do not represent dynamic human societies and their feedback interactions with the biogeophysical Earth system and macroeconomic integrated assessment models typically do so only with limited scope. This paper (i) proposes design principles for constructing world-Earth models (WEMs) for Earth system analysis of the Anthropocene, i.e., models of social (world)-ecological (Earth) coevolution on up to planetary scales, and (ii) presents the copan:CORE open simulation modeling framework for developing, composing and analyzing such WEMs based on the proposed principles. The framework provides a modular structure to flexibly construct and study WEMs. These can contain biophysical (e.g., carbon cycle dynamics), socio-metabolic or economic (e.g., economic growth or energy system changes), and sociocultural processes (e.g., voting on climate policies or changing social norms) and their feedback interactions, and they are based on elementary entity types, e.g., grid cells and social systems. Thereby, copan:CORE enables the epistemic flexibility needed for contributions towards Earth system analysis of the Anthropocene given the large diversity of competing theories and methodologies used for describing socio-metabolic or economic and sociocultural processes in the Earth system by various fields and schools of thought. To illustrate the capabilities of the framework, we present an exemplary and highly stylized WEM implemented in copan:CORE that illustrates how endogenizing sociocultural processes and feedbacks such as voting on climate policies based on socially learned environmental awareness could fundamentally change macroscopic model outcomes. © Author(s) 2020.
  • Item
    A network-based microfoundation of Granovetter’s threshold model for social tipping
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Wiedermann, Marc; Smith, E. Keith; Heitzig, Jobst; Donges, Jonathan F.
    Social tipping, where minorities trigger larger populations to engage in collective action, has been suggested as one key aspect in addressing contemporary global challenges. Here, we refine Granovetter’s widely acknowledged theoretical threshold model of collective behavior as a numerical modelling tool for understanding social tipping processes and resolve issues that so far have hindered such applications. Based on real-world observations and social movement theory, we group the population into certain or potential actors, such that – in contrast to its original formulation – the model predicts non-trivial final shares of acting individuals. Then, we use a network cascade model to explain and analytically derive that previously hypothesized broad threshold distributions emerge if individuals become active via social interaction. Thus, through intuitive parameters and low dimensionality our refined model is adaptable to explain the likelihood of engaging in collective behavior where social-tipping-like processes emerge as saddle-node bifurcations and hysteresis. © 2020, The Author(s).
  • Item
    Closing the loop: Reconnecting human dynamics to Earth System science
    (London [u.a.] : Sage, 2017) Donges, Jonathan F.; Winkelmann, Ricarda; Lucht, Wolfgang; Cornell, Sarah E.; Dyke, James G.; Rockström, Johan; Heitzig, Jobst; Schellnhuber, Hans Joachim
    International commitment to the appropriately ambitious Paris climate agreement and the United Nations Sustainable Development Goals in 2015 has pulled into the limelight the urgent need for major scientific progress in understanding and modelling the Anthropocene, the tightly intertwined social-environmental planetary system that humanity now inhabits. The Anthropocene qualitatively differs from previous eras in Earth’s history in three key characteristics: (1) There is planetary-scale human agency. (2) There are social and economic networks of teleconnections spanning the globe. (3) It is dominated by planetary-scale social-ecological feedbacks. Bolting together old concepts and methodologies cannot be an adequate approach to describing this new geological era. Instead, we need a new paradigm in Earth System science that is founded equally on a deep understanding of the physical and biological Earth System – and of the economic, social and cultural forces that are now an intrinsic part of it. It is time to close the loop and bring socially mediated dynamics explicitly into theory, analysis and models that let us study the whole Earth System.