Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Identification of dynamical transitions in marine palaeoclimate records by recurrence network analysis

2011, Donges, J.F., Donner, R.V., Rehfeld, K., Marwan, N., Trauth, M.H., Kurths, J.

The analysis of palaeoclimate time series is usually affected by severe methodological problems, resulting primarily from non-equidistant sampling and uncertain age models. As an alternative to existing methods of time series analysis, in this paper we argue that the statistical properties of recurrence networks - a recently developed approach - are promising candidates for characterising the system's nonlinear dynamics and quantifying structural changes in its reconstructed phase space as time evolves. In a first order approximation, the results of recurrence network analysis are invariant to changes in the age model and are not directly affected by non-equidistant sampling of the data. Specifically, we investigate the behaviour of recurrence network measures for both paradigmatic model systems with non-stationary parameters and four marine records of long-term palaeoclimate variations. We show that the obtained results are qualitatively robust under changes of the relevant parameters of our method, including detrending, size of the running window used for analysis, and embedding delay. We demonstrate that recurrence network analysis is able to detect relevant regime shifts in synthetic data as well as in problematic geoscientific time series. This suggests its application as a general exploratory tool of time series analysis complementing existing methods.

Loading...
Thumbnail Image
Item

Long-term changes in the north-south asymmetry of solar activity: A nonlinear dynamics characterization using visibility graphs

2014, Zou, Y., Donner, R.V., Marwan, N., Small, M., Kurths, J.

Solar activity is characterized by complex dynamics superimposed onto an almost periodic, approximately 11-year cycle. One of its main features is the presence of a marked, time-varying hemispheric asymmetry, the deeper reasons for which have not yet been completely uncovered. Traditionally, this asymmetry has been studied by considering amplitude and phase differences. Here, we use visibility graphs, a novel tool of nonlinear time series analysis, to obtain complementary information on hemispheric asymmetries in dynamical properties. Our analysis provides deep insights into the potential and limitations of this method, revealing a complex interplay between factors relating to statistical and dynamical properties, i.e., effects due to the probability distribution and the regularity of observed fluctuations. We demonstrate that temporal changes in the hemispheric predominance of the graph properties lag those directly associated with the total hemispheric sunspot areas. Our findings open a new dynamical perspective on studying the north-south sunspot asymmetry, which is to be further explored in future work.