Search Results

Now showing 1 - 2 of 2
  • Item
    Combining atmospheric and snow radiative transfer models to assess the solar radiative effects of black carbon in the Arctic
    (Katlenburg-Lindau : EGU, 2020) Donth, Tobias; Jäkel, Evelyn; Ehrlich, André; Heinold, Bernd; Schacht, Jacob; Herber, Andreas; Zanatta, Marco; Wendisch, Manfred
    The magnitude of solar radiative effects (cooling or warming) of black carbon (BC) particles embedded in the Arctic atmosphere and surface snow layer was explored on the basis of case studies. For this purpose, combined atmospheric and snow radiative transfer simulations were performed for cloudless and cloudy conditions on the basis of BC mass concentrations measured in pristine early summer and more polluted early spring conditions. The area of interest is the remote sea-ice-covered Arctic Ocean in the vicinity of Spitsbergen, northern Greenland, and northern Alaska typically not affected by local pollution. To account for the radiative interactions between the black-carbon-containing snow surface layer and the atmosphere, an atmospheric and snow radiative transfer model were coupled iteratively. For pristine summer conditions (no atmospheric BC, minimum solar zenith angles of 55 ) and a representative BC particle mass concentration of 5 ng g-1 in the surface snow layer, a positive daily mean solar radiative forcing of +0.2 W m-2 was calculated for the surface radiative budget. A higher load of atmospheric BC representing early springtime conditions results in a slightly negative mean radiative forcing at the surface of about -0.05 W m-2, even when the low BC mass concentration measured in the pristine early summer conditions was embedded in the surface snow layer. The total net surface radiative forcing combining the effects of BC embedded in the atmosphere and in the snow layer strongly depends on the snow optical properties (snow specific surface area and snow density). For the conditions over the Arctic Ocean analyzed in the simulations, it was found that the atmospheric heating rate by water vapor or clouds is 1 to 2 orders of magnitude larger than that by atmospheric BC. Similarly, the daily mean total heating rate (6 K d-1) within a snowpack due to absorption by the ice was more than 1 order of magnitude larger than that of atmospheric BC (0.2 K d-1). Also, it was shown that the cooling by atmospheric BC of the near-surface air and the warming effect by BC embedded in snow are reduced in the presence of clouds. © 2020 Copernicus GmbH. All rights reserved.
  • Item
    Influx of African biomass burning aerosol during the Amazonian dry season through layered transatlantic transport of black carbon-rich smoke
    (Katlenburg-Lindau : EGU, 2020) Holanda, Bruna A.; Pöhlker, Mira L.; Walter, David; Saturno, Jorge; Sörgel, Matthias; Ditas, Jeannine; Ditas, Florian; Schulz, Christiane; Aurélio Franco, Marco; Wang, Qiaoqiao; Donth, Tobias; Artaxo, Paulo; Barbosa, Henrique M.J.; Borrmann, Stephan; Braga, Ramon; Brito, Joel; Cheng, Yafang; Dollner, Maximilian; Kaiser, JohannesW.; Klimach, Thomas; Knote, Christoph; Krüger, Ovid O.; Fütterer, Daniel; Lavrič, Jošt V.; Ma, Nan; Machado, Luiz A.T.; Ming, Jing; Morais, Fernando G.; Paulsen, Hauke; Sauer, Daniel; Schlager, Hans; Schneider, Johannes; Su, Hang; Weinzierl, Bernadett; Walser, Adrian; Wendisch, Manfred; Ziereis, Helmut; Zöger, Martin; Pöschl, Ulrich; Andreae, Meinrat O.; Pöhlker, Christopher
    Black carbon (BC) aerosols influence the Earth's atmosphere and climate, but their microphysical properties, spatiotemporal distribution, and long-range transport are not well constrained. This study presents airborne observations of the transatlantic transport of BC-rich African biomass burning (BB) smoke into the Amazon Basin using a Single Particle Soot Photometer (SP2) as well as several complementary techniques. We base our results on observations of aerosols and trace gases off the Brazilian coast onboard the HALO (High Altitude and LOng range) research aircraft during the ACRIDICON-CHUVA campaign in September 2014. During flight AC19 over land and ocean at the northeastern coastline of the Amazon Basin, we observed a BCrich layer at ∼ 3:5 km altitude with a vertical extension of ∼ 0:3 km. Backward trajectories suggest that fires in African grasslands, savannas, and shrublands were the main source of this pollution layer and that the observed BB smoke had undergone more than 10 d of atmospheric transport and aging over the South Atlantic before reaching the Amazon Basin. The aged smoke is characterized by a dominant accumulation mode, centered at about 130 nm, with a particle concentration of Nacc D 850±330 cm-3. The rBC particles account for ∼ 15 % of the submicrometer aerosol mass and ∼ 40 % of the total aerosol number concentration. This corresponds to a mass concentration range from 0.5 to 2 μ g m-3 (1st to 99th percentiles) and a number concentration range from 90 to 530 cm-3. Along with rBC, high cCO (150 ± 30 ppb) and cO3 (56 ± 9 ppb) mixing ratios support the biomass burning origin and pronounced photochemical aging of this layer. Upon reaching the Amazon Basin, it started to broaden and to subside, due to convective mixing and entrainment of the BB aerosol into the boundary layer. Satellite observations show that the transatlantic transport of pollution layers is a frequently occurring process, seasonally peaking in August/September. By analyzing the aircraft observations together with the long-term data from the Amazon Tall Tower Observatory (ATTO), we found that the transatlantic transport of African BB smoke layers has a strong impact on the northern and central Amazonian aerosol population during the BBinfluenced season (July to December). In fact, the early BB season (July to September) in this part of the Amazon appears to be dominated by African smoke, whereas the later BB season (October to December) appears to be dominated by South American fires. This dichotomy is reflected in pronounced changes in aerosol optical properties such as the single scattering albedo (increasing from 0.85 in August to 0.90 in November) and the BC-to-CO enhancement ratio (decreasing from 11 to 6 ng m-3 ppb-1). Our results suggest that, despite the high fraction of BC particles, the African BB aerosol acts as efficient cloud condensation nuclei (CCN), with potentially important implications for aerosol-cloud interactions and the hydrological cycle in the Amazon. © 2020 Author(s).