Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

A Parametric Model for Local Air Exchange Rate of Naturally Ventilated Barns

2021, Doumbia, E. Moustapha, Janke, David, Yi, Qianying, Prinz, Alexander, Amon, Thomas, Kriegel, Martin, Hempel, Sabrina

With an increasing number of naturally ventilated dairy barns (NVDBs), the emission of ammonia and greenhouse gases into the surrounding environment is expected to increase as well. It is very challenging to accurately determine the amount of gases released from a NVDB on-farm. Moreover, control options for the micro-climate to increase animal welfare are limited in an NVDB at present. Both issues are due to the complexity of the NVDB micro-environment, which is subject to temporal (such as wind direction and temperature) and spatial (such as openings and animals acting as airflow obstacles) fluctuations. The air exchange rate (AER) is one of the most valuable evaluation entities, since it is directly related to the gas emission rate and animal welfare. In this context, our study determined the general and local AERs of NVDBs of different shapes under diverse airflow conditions. Previous works identified main influencing parameters for the general AER and mathematically linked them together to predict the AER of the barn as a whole. The present research study is a continuation and extension of previous studies about the determination of AER. It provides new insights into the influence of convection flow regimes. In addition, it goes further in precision by determining the local AERs, depending on the position of the considered volume inside the barn. After running several computational fluid dynamics (CFD) simulations, we used the statistical tool of general linear modeling in order to identify quantitative relationships between the AER and the following five influencing parameters, the length/width ratio of the barn, the side opening configuration, the airflow temperature, magnitude and incoming direction. The work succeeded in taking the temperature into account as a further influencing parameter in the model and, thus, for the first time, in analysing the effect of the different types of flow convection in this context. The resulting equations predict the barn AER with an R2 equals 0.98 and the local AER with a mean R2 equals around 0.87. The results go a step further in the precise determination of the AER of NVDB and, therefore, are of fundamental importance for a better and deeper understanding of the interaction between the driving forces of AER in NVDB.

Loading...
Thumbnail Image
Item

On Finding the Right Sampling Line Height through a Parametric Study of Gas Dispersion in a NVB

2021, Doumbia, E. Moustapha, Janke, David, Yi, Qianying, Zhang, Guoqiang, Amon, Thomas, Kriegel, Martin, Hempel, Sabrina

The tracer gas method is one of the common ways to evaluate the air exchange rate in a naturally ventilated barn. One crucial condition for the accuracy of the method is that both considered gases (pollutant and tracer) are perfectly mixed at the points where the measurements are done. In the present study, by means of computational fluids dynamics (CFD), the mixing ratio NH3/CO2 is evaluated inside a barn in order to assess under which flow conditions the common height recommendation guidelines for sampling points (sampling line and sampling net) of the tracer gas method are most valuable. Our CFD model considered a barn with a rectangular layout and four animal-occupied zones modeled as a porous medium representing pressure drop and heat entry from lying and standing cows. We studied three inflow angles and six combinations of air inlet wind speed and temperatures gradients covering the three types of convection, i.e., natural, mixed, and forced. Our results showed that few cases corresponded to a nearly perfect gas mixing ratio at the currently common recommendation of at least a 3 m measurement height, while the best height in fact lied between 1.5 m and 2.5 m for most cases.

Loading...
Thumbnail Image
Item

CFD modelling of an animal occupied zone using an anisotropic porous medium model with velocity depended resistance parameters

2021, Doumbia, E. Moustapha, Janke, David, Yi, Qianying, Amon, Thomas, Kriegel, Martin, Hempel, Sabrina

The airflow in dairy barns is affected by many factors, such as the barn’s geometry, weather conditions, configurations of the openings, cows acting as heat sources, flow obstacles, etc. Computational fluids dynamics (CFD) has the advantages of providing detailed airflow information and allowing fully-controlled boundary conditions, and therefore is widely used in livestock building research. However, due to the limited computing power, numerous animals are difficult to be designed in detail. Consequently, there is the need to develop and use smart numerical models in order to reduce the computing power needed while at the same time keeping a comparable level of accuracy. In this work the porous medium modeling is considered to solve this problem using Ansys Fluent. A comparison between an animal occupied zone (AOZ) filled with randomly arranged 22 simplified cows’ geometry model (CM) and the porous medium model (PMM) of it, was made. Anisotropic behavior of the PMM was implemented in the porous modeling to account for turbulence influences. The velocity at the inlet of the domain has been varied from 0.1 m s−1 to 3 m s−1 and the temperature difference between the animals and the incoming air was set at 20 K. Leading to Richardson numbers Ri corresponding to the three types of heat transfer convection, i.e. natural, mixed and forced convection. It has been found that the difference between two models (the cow geometry model and the PMM) was around 2% for the pressure drop and less than 6% for the convective heat transfer. Further the usefulness of parametrized PMM with a velocity adaptive pressure drop and heat transfer coefficient is shown by velocity field validation of an on-farm measurement.