Search Results

Now showing 1 - 2 of 2
  • Item
    Aerosol particle measurements at three stationary sites in the megacity of Paris during summer 2009: Meteorology and air mass origin dominate aerosol particle composition and size distribution
    (München : European Geopyhsical Union, 2013) Freutel, F.; Schneider, J.; Drewnick, F.; Weiden-Reinmüller, S.-L.; Crippa, M.; Prévôt, A.S.H.; Baltensperger, U.; Poulain, L.; Wiedensohler, R.A.; Sciare, J.; Sarda-Estève, R.; Burkhart, J.F.; Eckhardt, S.; Stohl, A.; Gros, V.; Colomb, A.; Michoud, V.; Doussin, J.F.; Borbon, A.; Haeffelin, M.; Morille, Y.; Beekmann, M.; Borrmann, S.
    During July 2009, a one-month measurement campaign was performed in the megacity of Paris. Amongst other measurement platforms, three stationary sites distributed over an area of 40 km in diameter in the greater Paris region enabled a detailed characterization of the aerosol particle and gas phase. Simulation results from the FLEXPART dispersion model were used to distinguish between different types of air masses sampled. It was found that the origin of air masses had a large influence on measured mass concentrations of the secondary species particulate sulphate, nitrate, ammonium, and oxygenated organic aerosol measured with the Aerodyne aerosol mass spectrometer in the submicron particle size range: particularly high concentrations of these species (about 4 μg m−3, 2 μg m−3, 2 μg m−3, and 7 μg m−3, respectively) were measured when aged material was advected from continental Europe, while for air masses originating from the Atlantic, much lower mass concentrations of these species were observed (about 1 μg m−3, 0.2 μg m−3, 0.4 μg m−3, and 1–3 μg m−3, respectively). For the primary emission tracers hydrocarbon-like organic aerosol, black carbon, and NOx it was found that apart from diurnal source strength variations and proximity to emission sources, local meteorology had the largest influence on measured concentrations, with higher wind speeds leading to larger dilution and therefore smaller measured concentrations. Also the shape of particle size distributions was affected by wind speed and air mass origin. Quasi-Lagrangian measurements performed under connected flow conditions between the three stationary sites were used to estimate the influence of the Paris emission plume onto its surroundings, which was found to be rather small. Rough estimates for the impact of the Paris emission plume on the suburban areas can be inferred from these measurements: Volume mixing ratios of 1–14 ppb of NOx, and upper limits for mass concentrations of about 1.5 μg m−3 of black carbon and of about 3 μg m−3 of hydrocarbon-like organic aerosol can be deduced which originate from both, local emissions and the overall Paris emission plume. The secondary aerosol particle phase species were found to be not significantly influenced by the Paris megacity, indicating their regional origin. The submicron aerosol mass concentrations of particulate sulphate, nitrate, and ammonium measured during time periods when air masses were advected from eastern central Europe were found to be similar to what has been found from other measurement campaigns in Paris and south-central France for this type of air mass origin, indicating that the results presented here are also more generally valid.
  • Item
    Aging of secondary organic aerosol generated from the ozonolysis of α-pinene: Effects of ozone, light and temperature
    (München : European Geopyhsical Union, 2015) Denjean, C.; Formenti, P.; Picquet-Varrault, B.; Camredon, M.; Pangui, E.; Zapf, P.; Katrib, Y.; Giorio, C.; Tapparo, A.; Temime-Roussel, B.; Monod, A.; Aumont, B.; Doussin, J.F.
    A series of experiments was conducted in the CESAM (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber) simulation chamber to investigate the evolution of the physical and chemical properties of secondary organic aerosols (SOAs) during different forcings. The present experiments represent a first attempt to comprehensively investigate the influence of oxidative processing, photochemistry, and diurnal temperature cycling upon SOA properties. SOAs generated from the ozonolysis of α-pinene were exposed under dry conditions (< 1% relative humidity) to (1) elevated ozone concentrations, (2) light (under controlled temperature conditions) or (3) light and heat (6 °C light-induced temperature increase), and the resultant changes in SOA optical properties (i.e. absorption and scattering), hygroscopicity and chemical composition were measured using a suite of instrumentation interfaced to the CESAM chamber. The complex refractive index (CRI) was derived from integrated nephelometer measurements of 525 nm wavelength, using Mie scattering calculations and measured number size distributions. The particle size growth factor (GF) was measured with a hygroscopic tandem differential mobility analyzer (H-TDMA). An aerosol mass spectrometer (AMS) was used for the determination of the f44 / f43 and O : C ratio of the particles bulk. No change in SOA size or chemical composition was observed during O3 and light exposure at constant temperature; in addition, GF and CRI of the SOA remained constant with forcing. On the contrary, illumination of SOAs in the absence of temperature control led to an increase in the real part of the CRI from 1.35 (±0.03) to 1.49 (±0.03), an increase of the GF from 1.04 (±0.02) to 1.14 (±0.02) and an increase of the f44 / f43 ratio from 1.73 (±0.03) to 2.23 (±0.03). The simulation of the experiments using the master chemical mechanism (MCM) and the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) shows that these changes resulted from the evaporation of semi-volatile and less oxidized SOA species induced by the relatively minor increases in temperature (~ 6 °C). These surprising results suggest that α-pinene–O3 SOA properties may be governed more by local temperature fluctuations than by oxidative processing and photochemistry.