Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Identification of representative dairy cattle and fodder crop production typologies at regional scale in Europe

2022, Díaz de Otálora, Xabier, Dragoni, Federico, Del Prado, Agustín, Estellés, Fernándo, Wilfart, Aurélie, Krol, Dominika, Balaine, Lorraine, Anestis, Vasileios, Amon, Barbara

European dairy production faces significant economic, environmental, and social sustainability challenges. Given the great diversity of dairy cattle production systems in Europe, region-specific concepts to improve environmental and socioeconomic sustainability are needed. Regionally integrated dairy cattle-crop systems emerge as a more resilient and sustainable alternative to highly specialized farming systems. Identifying different dairy cattle production typologies and their potential interactions with fodder crop production is presented as a step in transitioning to optimized agricultural systems. Currently existing typologies of integrated systems are often insufficient when characterizing structural, socioeconomic, and environmental components of farms. We fill this gap in the literature by identifying, describing, and comparing representative dairy cattle production system typologies and their interrelation with regional fodder crop production at the European regional scale. This is a necessary step to assess the scope for adapted mitigation and sustainability measures in the future. For this purpose, a multivariate statistical approach is applied. We show how different land-use practices, farm structure characteristics, socio-economic attributes, and emission intensities condition dairy production. Furthermore, the diversity of regional fodder crop production systems is demonstrated by analyzing their distribution in Europe. Together with identified typologies, varying degrees of regional specialization in milk production allow for identifying future strategies associated with the application of integrated systems in key European dairy regions. This study contributes to a better understanding of the existing milk production diversity in Europe and their relationship with regional fodder crop production. In addition, we discuss the benefits of integrated systems as a clear, viable, and resilient alternative to ongoing livestock intensification in the European context. Identifying interactions between components of integrated systems will facilitate decision-making, the design and implementation of measures to mitigate climate change, and the promotion of positive socio-economic and environmental interactions.

Loading...
Thumbnail Image
Item

Evaluating Three-Pillar Sustainability Modelling Approaches for Dairy Cattle Production Systems

2021, Díaz de Otálora, Xabier, del Prado, Agustín, Dragoni, Federico, Estellés, Fernando, Amon, Barbara

Milk production in Europe is facing major challenges to ensure its economic, environmental, and social sustainability. It is essential that holistic concepts are developed to ensure the future sustainability of the sector and to assist farmers and stakeholders in making knowledge-based decisions. In this study, integrated sustainability assessment by means of whole-farm modelling is presented as a valuable approach for identifying factors and mechanisms that could be used to improve the three pillars (3Ps) of sustainability in the context of an increasing awareness of economic profitability, social well-being, and environmental impacts of dairy production systems (DPS). This work aims (i) to create an evaluation framework that enables quantitative analysis of the level of integration of 3P sustainability indicators in whole-farm models and (ii) to test this method. Therefore, an evaluation framework consisting of 35 indicators distributed across the 3Ps of sustainability was used to evaluate three whole-farm models. Overall, the models integrated at least 40% of the proposed indicators. Different results were obtained for each sustainability pillar by each evaluated model. Higher scores were obtained for the environmental pillar, followed by the economic and the social pillars. In conclusion, this evaluation framework was found to be an effective tool that allows potential users to choose among whole-farm models depending on their needs. Pathways for further model development that may be used to integrate the 3P sustainability assessment of DPS in a more complete and detailed way were identified.

Loading...
Thumbnail Image
Item

Carbon Budget of an Agroforestry System after Being Converted from a Poplar Short Rotation Coppice

2020, Pecchioni, Giovanni, Bosco, Simona, Volpi, Iride, Mantino, Alberto, Dragoni, Federico, Giannini, Vittoria, Tozzini, Cristiano, Mele, Marcello, Ragaglini, Giorgio

Poplar (Populus L. spp.) Short Rotation Coppice systems (SRCs) for bioenergy production are being converted back to arable land. Transitioning to Alley Cropping Systems (ACSs) could be a suitable strategy for integrating former tree rows and arable crops. A field trial (Pisa, Central Italy) was set up with the aim of assessing the C storage of an ACS system based on hybrid poplar and sorghum (Sorghum bicolor L. Moench) and comparing it with that of an SRC cultivation system. The carbon budget at the agroecosystem scale was assessed in the first year of the transition using the net biome production (NBP) approach with a simplified method. The overall NBP for the SRC was positive (96 ± 40 g C m−2 year−1), highlighting that the system was a net carbon sink (i.e., NBP > 0). However, the ACS registered a net C loss (i.e., NBP < 0), since the NBP was −93 ± 56 g C m−2 year−1. In the first year of the transition, converting the SRC into an ACS counteracted the potential beneficial effect of C storage in tree belowground biomass due to the high heterotrophic respiration rate recorded in the ACS, which was fostered by the incorporation of residues and tillage disturbance in the alley. Additional years of heterotrophic respiration measurements could allow for an estimate of the speed and extent of C losses.

Loading...
Thumbnail Image
Item

Inventory reporting of livestock emissions: the impact of the IPCC 1996 and 2006 Guidelines

2021-6-22, Amon, Barbara, Çinar, Gültaç, Anderl, Michael, Dragoni, Federico, Kleinberger-Pierer, Magdalena, Hörtenhuber, Stefan

The livestock sector is a major contributor to agricultural greenhouse gas (GHG) and nitrogen (N) emissions and efforts are being made to reduce these emissions. National emission inventories are the main tool for reporting emissions. They have to be consistent, comparable, complete, accurate and transparent. The quality of emission inventories is affected by the reporting methodology, emission factors and knowledge of individual sources. In this paper, we investigate the effects of moving from the 1996 IPCC Guidelines for National Greenhouse Gas Inventories to the 2006 IPCC Guidelines on the emission estimates from the livestock sector. With Austria as a case study, we estimated the emissions according to the two guidelines, revealing marked changes in emission estimates from different source categories resulting from changes in the applied methodology. Overall estimated GHG emissions from the livestock sector decreased when applying the IPCC 2006 methodology, except for emissions from enteric fermentation. Our study revealed shifts in the relative importance of main emission sources. While the share of CH4 emissions from enteric fermentation and manure management increased, the share of N2O emissions from manure management and soils decreased. The most marked decrease was observed for the share of indirect N2O emissions. Our study reveals a strong relationship between the emission inventory methodology and mitigation options as mitigation measures will only be effective for meeting emission reduction targets if their effectiveness can be demonstrated in the national emission inventories. We include an outlook on the 2019 IPCC Refinement and its potential effects on livestock emissions estimates. Emission inventory reports are a potent tool to show the effect of mitigation measures and the methodology prescribed in inventory guidelines will have a distinct effect on the selection of mitigation measures.