Search Results

Now showing 1 - 3 of 3
  • Item
    The behavior of a many particle cathode in a lithium-ion battery
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Dreyer, Wolfgang; Guhlke, Clemens; Huth, Robert
    We study the almost reversible storage process of charging and discharging of lithium-ion batteries. That process is accompanied by a phase transition and charging and discharging run along different paths, so that hysteretic behavior is observed. We are interested in the storage problem of the cathode of a lithium-ion battery consisting of a system of many iron phosphate (FePO4) particles. There are mathematical models, see [DGJ08], [DGGHJ09] and [DG09], that describe phase transitions and hysteresis exclusively in a single storage particle and they can describe the observed hysteretic voltage-charge plots with almost horizontal plateaus. Interestingly the models predict that the coexistence of a 2-phase system in an individual particle disappears, if its size is below a critical value. The disappearance of the phase transition in the single particle model implies the disappearance of the hysteresis. However, in the experiment hysteretic behavior survives. In other words: The behavior of a storage system consisting of many particles is qualitatively independent of the fact whether the individual particles itself develop a 2-phase system or if they remain in a single phase state. This apparent paradoxical observation will be resolved in this article by a many particle model. It will be shown that if each of the individual particles is in a homogeneous state, nevertheless the many particle ensemble exhibits phase transition and hysteresis ...
  • Item
    Hysteresis in the context of hydrogen storage and lithium-ion batteries
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Dreyer, Wolfgang; Guhlke, Clemens; Huth, Robert
    The processes of reversible storage of hydrogen in a metal by loading and unloading and of charging and discharging of lithium-ion batteries have many things in common. The both processes are accompanied by a phase transition and loading and unloading run along different paths, so that hysteretic behavior is observed. For hydrogen storage we consider a fine powder of magnesium (Mg) particles and lithium storage is studied for iron phosphate (FePO_4) particles forming the cathode of a lithium-ion battery. The mathematical models that are established in citeDGJ08 and citeDGH09a, describe phase transitions and hysteresis exclusively in a single particle and on that basis they can predict the observed hysteretic plots with almost horizontal plateaus. Interestingly the models predict that the coexistence of a 2-phase system in an individual particle disappears, if its size is below a critical value. However, measurements reveal that this is qualitatively not reflected by the mentioned hysteretic plots of loading and unloading. In other words: The behavior of a storage system consisting of many particles is qualitatively independent of the fact whether the individual particles itself develop a 2-phase system or if they remain in a single phase state. This apparent paradoxical observation will be resolved in this article. It will be shown that if each of the individual particles homogeneously distributes the supplied matter, nevertheless the many particle ensemble exhibits phase transition and hysteresis, because one of the two phases is realized in some part of the particles while the remaining part is in the other phase.
  • Item
    Phase transition and hysteresis in a rechargeable lithium battery revisited
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Dreyer, Wolfgang; Gaberscek, Miran; Guhlke, Clemens; Huth, Robert; Jamnik, Janko
    We revisit a model which describes the evolution of a phase transition that occurs in the cathode of a rechargeable lithium battery during the process of charging/discharging. The model is capable to simulate hysteretic behavior of the voltage