Search Results

Now showing 1 - 10 of 25
  • Item
    Overcoming the shortcomings of the Nernst-Planck model
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Dreyer, Wolfgang; Guhlke, Clemens; Müller, Rüdiger
    This is a study on electrolytes that takes a thermodynamically consistent coupling between mechanics and diffusion into account. It removes some inherent deficiencies of the popular Nernst-Planck model. A boundary problem for equilibrium processes is used to illustrate the new features of our model.
  • Item
    Blow-up versus boundedness in a nonlocal and nonlinear Fokker-Planck equation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Dreyer, Wolfgang; Huth, Robert; Mielke, Alexander; Rehberg, Joachim; Winkler, Michael
    Literaturverz.
  • Item
    Analysis of improved Nernst-Planck-Poisson models of compressible isothermal electrolytes. Part II: Approximation and a priori estimates
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Dreyer, Wolfgang; Druet, Pierre-Étienne; Gajewski, Paul; Guhlke, Clemens
    We consider an improved NernstPlanckPoisson model first proposed by Dreyer et al. in 2013 for compressible isothermal electrolytes in non equilibrium. The model takes into account the elastic deformation of the medium that induces an inherent coupling of mass and momentum transport. The model consists of convectiondiffusionreaction equations for the constituents of the mixture, of the Navier-Stokes equation for the barycentric velocity, and of the Poisson equation for the electrical potential. Due to the principle of mass conservation, crossdiffusion phenomena must occur and the mobility matrix (Onsager matrix) has a kernel. In this paper, which continues the investigation of [DDGG17a], we derive for thermodynamically consistent approximation schemes the natural uniform estimates associated with the dissipations. Our results essentially improve our former study [DDGG16], in particular the a priori estimates concerning the relative chemical potentials.
  • Item
    A new perspective on the electron transfer: Recovering the Butler-Volmer equation in non-equilibrium thermodynamics
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Dreyer, Wolfgang; Guhlke, Clemens; Müller, Rüdiger
    Understanding and correct mathematical description of electron transfer reaction is a central question in electrochemistry. Typically the electron transfer reactions are described by the Butler-Volmer equation which has its origin in kinetic theories. The Butler-Volmer equation relates interfacial reaction rates to bulk quantities like the electrostatic potential and electrolyte concentrations. Since in the classical form, the validity of the Butler-Volmer equation is limited to some simple electrochemical systems, many attempts have been made to generalize the Butler-Volmer equation. Based on non-equilibrium thermodynamics we have recently derived a reduced model for the electrode-electrolyte interface. This reduced model includes surface reactions and adsorption but does not resolve the charge layer at the interface. Instead it is locally electroneutral and consistently incorporates all features of the double layer into a set of interface conditions. In the context of this reduced model we are able to derive a general Butler-Volmer equation. We discuss the application of the new Butler-Volmer equations to different scenarios like electron transfer reactions at metal electrodes, the intercalation process in lithium-iron-phosphate electrodes and adsorption processes. We illustrate the theory by an example of electroplating.
  • Item
    Analysis of improved Nernst-Planck-Poisson models of compressible isothermal electrolytes. Part I: Derivation of the model and survey of the results
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Dreyer, Wolfgang; Druet, Pierre-Étienne; Gajewski, Paul; Guhlke, Clemens
    We consider an improved NernstPlanckPoisson model first proposed by Dreyer et al. in 2013 for compressible isothermal electrolytes in non equilibrium. The model takes into account the elastic deformation of the medium that induces an inherent coupling of mass and momentum transport. The model consists of convectiondiffusionreaction equations for the constituents of the mixture, of the Navier-Stokes equation for the barycentric velocity, and of the Poisson equation for the electrical potential. Due to the principle of mass conservation, crossdiffusion phenomena must occur and the mobility matrix (Onsager matrix) has a kernel. In this paper we establish the existence of a globalintime weak solution for the full model, allowing for a general structure of the mobility tensor and for chemical reactions with highly non linear rates in the bulk and on the active boundary. We characterise the singular states of the system, showing that the chemical species can vanish only globally in space, and that this phenomenon must be concentrated in a compact set of measure zero in time. With respect to our former study [DDGG16], we also essentially improve the a priori estimates, in particular concerning the relative chemical potentials.
  • Item
    A mixture theory of electrolytes containing solvation effects
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Dreyer, Wolfgang; Guhlke, Clemens; Landstorfer, Manuel
    In this work we present a new mixture theory of a liquid solvent containing completely dissociated ions to study the space charge layer of electrolytes in contact with some inert metal. We incorporate solvation shell effects (i) in our derivation of the mixing entropy and (ii) in the pressure model. Chemical potentials of ions and solvent molecules in the incompressible limit are then derived from a free energy function. For the thermodynamic equilibrium the coupled equation system of mass and momentum balance, the incompressibility constraint and the Poisson equation are summarized. With that we study the space charge layer of the electrolytic solution for an applied half cell potential and compare our results to historic and recent interpretations of the double layer in liquid electrolytes. The novelties of the new model are: (i) coupling of momentum- and mass-balance equations, (ii) calculation of entropic contributions due to solvated ions and (iii) the potential and pressure dependence of the free charge density in equilibrium.
  • Item
    Existence of weak solutions for improved Nernst-Planck-Poisson models of compressible reacting electrolytes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Dreyer, Wolfgang; Druet, Pierre-Étienne; Gajewski, Paul; Guhlke, Clemens
    We consider an improved Nernst-Planck-Poisson model for compressible electrolytes first proposed by Dreyer et al. in 2013. The model takes into account the elastic deformation of the medium. In particular, large pressure contributions near electrochemical interfaces induce an inherent coupling of mass and momentum transport. The model consists of convection-diffusion-reaction equations for the constituents of the mixture, of the Navier-Stokes equation for the barycentric velocity and the Poisson equation for the electrical potential. Cross-diffusion phenomena occur due to the principle of mass conservation. Moreover, the diffusion matrix (mobility matrix) has a zero eigenvalue, meaning that the system is degenerate parabolic. In this paper we establish the existence of a global-in-time weak solution for the full model, allowing for cross-diffusion and an arbitrary number of chemical reactions in the bulk and on the active boundary.
  • Item
    The impact of solvation and dissociation on the transport parameters of liquid electrolytes: Continuum modeling and numerical study
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Dreyer, Wolfgang; Guhlke, Clemens; Müller, Rüdiger
    Electro-thermodynamics provides a consistent framework to derive continuum models for electrochemical systems. For the application to a specific experimental system, the general model must be equipped with two additional ingredients: a free energy model to calculate the chemical potentials and a kinetic model for the kinetic coefficients. Suitable free energy models for liquid electrolytes incorporating ion-solvent interaction, finite ion sizes and solvation already exist and have been validated against experimental measurements. In this work, we focus on the modeling of the mobility coefficients based on MaxwellStefan setting and incorporate them into the general electro-thermodynamic framework. Moreover, we discuss the impact of model parameter on conductivity, transference numbers and salt diffusion coefficient. In particular, the focus is set on the solvation of ions and incomplete dissociation of a non-dilute electrolyte.
  • Item
    Hysteresis and phase transition in many-particle storage systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Dreyer, Wolfgang; Guhlke, Clemens; Herrmann, Michael
    We study the behavior of systems consisting of ensembles of interconnected storage particles. Our examples concern the storage of lithium in many-particle electrodes of rechargeable lithium-ion batteries and the storage of air in a system of interconnected rubber balloons. We are particularly interested in those storage systems whose constituents exhibit non-monotone material behavior leading to transitions between two coexisting phases and to hysteresis. In the current study we consider the case that the time to approach equilibrium of a single storage particle is much smaller than the time for full charging of the ensemble. In this regime the evolution of the probability to find a particle of the ensemble in a certain state, may be described by a nonlocal conservation law of Fokker-Planck type. Two constant parameter control whether the ensemble transits the 2-phase region along a Maxwell line or along a hysteresis path or if the ensemble shows the same non-monotone behavior as its constituents.
  • Item
    Continuum thermodynamics of chemically reacting fluid mixtures
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Bothe, Dieter; Dreyer, Wolfgang
    We consider viscous and heat conducting mixtures of molecularly miscible chemical species forming a fluid in which the constituents can undergo chemical reactions. Assuming a common temperature for all components, a first main aim is the derivation of a closed system of partial mass and partial momentum balances plus a common balance of internal energy. This is achieved by careful exploitation of the entropy principle which, in particular, requires appropriate definitions of absolute temperature and chemical potentials based on an adequate definition of thermal energy that excludes diffusive contributions. The latter is crucial in order to obtain a closure framework for the interaction forces between the different species. The interaction forces split into a thermo-mechanical and a chemical part, where the former turns out to be symmetric if binary interactions are assumed. In the non-reactive case, this leads to a system of Navier-Stokes type sub-systems, coupled by interspecies friction forces. For chemically reacting systems and as a new result, the chemical interaction force is identified as a contribution which is non-symmetric, unless chemical equilibrium holds. The theory also provides a rigorous derivation of the so-called generalized thermodynamic driving forces, avoiding the use of approximate solutions to the Boltzmann equations which is common in the engineering literature. Moreover, starting with a continuum thermodynamic field theory right away, local versions of fundamental relations known from thermodynamics of homogeneous systems, like the Gibbs-Duhem equation, are derived. Furthermore, using an appropriately extended version of the entropy principle and introducing cross-effects already before closure as entropy invariant couplings between principal dissipative mechanisms, the Onsager symmetry relations are a strict consequence. With a classification of the factors forming the binary products in the entropy production according to their parity instead of the classical distinction between so-called fluxes and driving forces, the apparent anti-symmetry of certain couplings is thereby also revealed. If the diffusion velocities are small compared to the speed of sound, the well-known Maxwell-Stefan equations together with the so-called generalized thermodynamic driving forces follow in the special case without chemical reactions, thereby neglecting wave phenomena in the diffusive motion. This results in a reduced model having only the constituents mass balances individually. In the reactive case, this approximation via a scale separation argument is no longer possible. Instead, we first employ the partial mass and mixture internal energy balances, common to both model classes, to identify all constitutive quantities. Combined with the concept of entropy invariant model reduction, leaving the entropy production unchanged under the reduction from partial momentum balances to a single common mixture momentum balance, the chemical interactions yield an additional contribution to the transport coefficients, leading to an extension of the Maxwell-Stefan equations to chemically active mixtures. Within the considered model class for reactive fluid mixtures the new results are achieved for arbitrary free energy functions.