Search Results

Now showing 1 - 10 of 39
Loading...
Thumbnail Image
Item

Stochastic model for LFP-electrodes

2016, Dreyer, Wolfgang, Friz, Peter K., Gajewski, Paul, Guhlke, Clemens, Maurelli, Mario

In the framework of non-equilibrium thermodynamics we derive a new model for porous electrodes. The model is applied to LiFePO4 (LFP) electrodes consisting of many LFP particles of nanometer size. The phase transition from a lithium-poor to a lithium-rich phase within LFP electrodes is controlled by surface fluctuations leading to a system of stochastic differential equations. The model is capable to derive an explicit relation between battery voltage and current that is controlled by thermodynamic state variables. This voltage-current relation reveals that in thin LFP electrodes lithium intercalation from the particle surfaces into the LFP particles is the principal rate limiting process. There are only two constant kinetic parameters in the model describing the intercalation rate and the fluctuation strength, respectively. The model correctly predicts several features of LFP electrodes, viz. the phase transition, the observed voltage plateaus, hysteresis and the rate limiting capacity. Moreover we study the impact of both the particle size distribution and the active surface area on the voltagecharge characteristics of the electrode. Finally we carefully discuss the phase transition for varying charging/discharging rates.

Loading...
Thumbnail Image
Item

New insights on the interfacial tension of electrochemical interfaces and the Lippmann equation

2015, Dreyer, Wolfgang, Guhlke, Clemens, Landstorfer, Manuel, Neumann, Johannes, Müller, Rüdiger

The Lippmann equation is considered as universal relationship between interfacial tension, double layer charge, and cell potential. Based on the framework of continuum thermo-electrodynamics we provide some crucial new insights to this relation. In a previous work we have derived a general thermodynamic consistent model for electrochemical interfaces, which showed a remarkable agreement to single crystal experimental data. Here we apply the model to a curved liquid metal electrode. If the electrode radius is large compared to the Debye length, we apply asymptotic analysis methods and obtain the Lippmann equation. We give precise definitions of the involved quantities and show that the interfacial tension of the Lippmann equation is composed of the surface tension of our general model, and contributions arising from the adjacent space charge layers. This finding is confirmed by a comparison of our model to experimental data of several mercury-electrolyte interfaces. We obtain qualitative and quantitative agreement in the 2V potential range for various salt concentrations. We also discuss the validity of our asymptotic model when the electrode radius is comparable to the Debye length.

Loading...
Thumbnail Image
Item

Phase transition and hysteresis in a rechargeable lithium battery

2007, Dreyer, Wolfgang, Gaberšček, Miran, Jamnik, Janko

We represent a model which describes the evolution of a phase transition that occurs in some part of a rechargeable lithium battery during the process of charging/discharging. The model is capable to simulate the hysteretic behavior of the voltage - charge characteristics. During discharging of the battery, the interstitial lattice sites of a small crystalline host system are filled up with lithium atoms and these are released again during charging. We show within the context of a sharp interface model that two mechanical phenomena go along with a phase transition that appears in the host system during supply and removal of lithium. At first the lithium atoms need more space than it is available by the interstitial lattice sites, which leads to a maximal relative change of the crystal volume of about $6%$. Furthermore there is an interface between two adjacent phases that has very large curvature of the order of magnitude 100 m, which evoke here a discontinuity of the normal component of the stress. In order to simulate the dynamics of the phase transitions and in particular the observed hysteresis we establish a new initial and boundary value problem for a nonlinear PDE system that can be reduced in some limiting case to an ODE system.

Loading...
Thumbnail Image
Item

Mathematical modeling of Czochralski type growth processes for semiconductor bulk single crystals

2012, Dreyer, Wolfgang, Druet, Pierre-Étienne, Klein, Olaf, Sprekels, Jürgen

This paper deals with the mathematical modeling and simulation of crystal growth processes by the so-called Czochralski method and related methods, which are important industrial processes to grow large bulk single crystals of semiconductor materials such as, e.,g., gallium arsenide (GaAs) or silicon (Si) from the melt. In particular, we investigate a recently developed technology in which traveling magnetic fields are applied in order to control the behavior of the turbulent melt flow. Since numerous different physical effects like electromagnetic fields, turbulent melt flows, high temperatures, heat transfer via radiation, etc., play an important role in the process, the corresponding mathematical model leads to an extremely difficult system of initial-boundary value problems for nonlinearly coupled partial differential equations ...

Loading...
Thumbnail Image
Item

The behavior of a many particle cathode in a lithium-ion battery

2009, Dreyer, Wolfgang, Guhlke, Clemens, Huth, Robert

We study the almost reversible storage process of charging and discharging of lithium-ion batteries. That process is accompanied by a phase transition and charging and discharging run along different paths, so that hysteretic behavior is observed. We are interested in the storage problem of the cathode of a lithium-ion battery consisting of a system of many iron phosphate (FePO4) particles. There are mathematical models, see [DGJ08], [DGGHJ09] and [DG09], that describe phase transitions and hysteresis exclusively in a single storage particle and they can describe the observed hysteretic voltage-charge plots with almost horizontal plateaus. Interestingly the models predict that the coexistence of a 2-phase system in an individual particle disappears, if its size is below a critical value. The disappearance of the phase transition in the single particle model implies the disappearance of the hysteresis. However, in the experiment hysteretic behavior survives. In other words: The behavior of a storage system consisting of many particles is qualitatively independent of the fact whether the individual particles itself develop a 2-phase system or if they remain in a single phase state. This apparent paradoxical observation will be resolved in this article by a many particle model. It will be shown that if each of the individual particles is in a homogeneous state, nevertheless the many particle ensemble exhibits phase transition and hysteresis ...

Loading...
Thumbnail Image
Item

Phase transition and hysteresis in a rechargeable lithium battery revisited

2009, Dreyer, Wolfgang, Gaberscek, Miran, Guhlke, Clemens, Huth, Robert, Jamnik, Janko

We revisit a model which describes the evolution of a phase transition that occurs in the cathode of a rechargeable lithium battery during the process of charging/discharging. The model is capable to simulate hysteretic behavior of the voltage

Loading...
Thumbnail Image
Item

On phase change of a vapor bubble in liquid water

2009, Dreyer, Wolfgang, Duderstadt, Frank, Hantke, Maren, Warnecke, Gerald

We consider a bubble of vapor and inert gas surrounded by the corresponding liquid phase. We study the behavior of the bubble due to phase change, i.e. condensation and evaporation, at the interface. Special attention is given to the effects of surface tension and heat production on the bubble dynamics as well as the propagation of acoustic elastic waves by including slight compressibility of the liquid phase. Separately we study the influence of the three phenomena heat conduction, elastic waves, and phase transition on the evolution of the bubble. The objective is to derive relations including the mass, momentum, and energy transfer between the phases. We find ordinary differential equations, in the cases of heat transfer and the emission of acoustic waves partial differential equations, that describe the bubble dynamics. From numerical evidence we deduce that the effect of phase transition and heat transfer on the behavior of the radius of the bubble is negligible. It turns out that the elastic waves in the liquid are of greatest importance to the dynamics of the bubble radius. The phase transition has a strong influence on the evolution of the temperature, in particular at the interface. Furthermore the phase transition leads to a drastic change of the water content in the bubble, so that a rebounding bubble is only possible, if it contains in addition an inert gas. In a forthcoming paper the equations derived are sought in order to close equations for multi-phase mixture balance laws for dispersed bubbles in liquids involving phase change. Also the model is used to make comparisons with experimental data on the oscillation of a laser induced bubble. For this case it was necessary to include the effect of an inert gas in the thermodynamic modeling of the phase transition

Loading...
Thumbnail Image
Item

A diffuse interface model for quasi-incrompressible flows : sharp interface limits and numerics

2012, Aki, Gonca, Daube, Johannes, Dreyer, Wolfgang, Giesselmann, Jan, Kränkel, Mirko, Kraus, Christiane

In this contribution, we investigate a diffuse interface model for quasi–incompressible flows. We determine corresponding sharp interface limits of two different scalings. The sharp interface limit is deduced by matched asymptotic expansions of the fields in powers of the interface. In particular, we study solutions of the derived system of inner equations and discuss the results within the general setting of jump conditions for sharp interface models. Furthermore, we treat, as a subproblem, the convective Cahn–Hilliard equation numerically by a Local Discontinuous Galerkin scheme.

Loading...
Thumbnail Image
Item

Asymptotic analysis for Korteweg models

2010, Dreyer, Wolfgang, Giesselmann, Jan, Kraus, Christiane, Rohde, Christiane

This paper deals with a sharp interface limit of the isothermal Navier-Stokes-Korteweg system. The sharp interface limit is performed by matched asymptotic expansions of the fields in powers of the interface width. These expansions are considered in the interfacial region (inner expansions) and in the bulk (outer expansion) and are matched order by order. Particularly we consider the first orders of the corresponding inner equations obtained by a change of coordinates in an interfacial layer. For a specific scaling we establish solvability criteria for these inner equations and recover the results within the general setting of jump conditions for sharp interface models.

Loading...
Thumbnail Image
Item

Exact solutions to the Riemann problem for compressible isothermal Euler equations for two phase flows with and without phase transition

2011, Dreyer, Wolfgang, Hantke, Maren, Warnecke, Gerald

We consider the isothermal Euler equations with phase transition between a liquid and a vapor phase. The mass transfer is modeled by a kinetic relation. We prove existence and uniqueness results. Further, we construct the exact solution for Riemann problems. We derive analogous results for the cases of initially one phase with resulting condensation by compression or evaporation by expansion. Further we present numerical results for these cases. We compare the results to similar problems without phase transition.