Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Impact of methane and black carbon mitigation on forcing and temperature: a multi-model scenario analysis

2020, Smith, Steven J., Chateau, Jean, Dorheim, Kalyn, Drouet, Laurent, Durand-Lasserve, Olivier, Fricko, Oliver, Fujimori, Shinichiro, Hanaoka, Tatsuya, Harmsen, Mathijs, Hilaire, Jérôme, Keramidas, Kimon, Klimont, Zbigniew, Luderer, Gunnar, Moura, Maria Cecilia P., Riahi, Keywan, Rogelj, Joeri, Sano, Fuminori, van Vuuren, Detlef P., Wada, Kenichi

The relatively short atmospheric lifetimes of methane (CH4) and black carbon (BC) have focused attention on the potential for reducing anthropogenic climate change by reducing Short-Lived Climate Forcer (SLCF) emissions. This paper examines radiative forcing and global mean temperature results from the Energy Modeling Forum (EMF)-30 multi-model suite of scenarios addressing CH4 and BC mitigation, the two major short-lived climate forcers. Central estimates of temperature reductions in 2040 from an idealized scenario focused on reductions in methane and black carbon emissions ranged from 0.18–0.26 °C across the nine participating models. Reductions in methane emissions drive 60% or more of these temperature reductions by 2040, although the methane impact also depends on auxiliary reductions that depend on the economic structure of the model. Climate model parameter uncertainty has a large impact on results, with SLCF reductions resulting in as much as 0.3–0.7 °C by 2040. We find that the substantial overlap between a SLCF-focused policy and a stringent and comprehensive climate policy that reduces greenhouse gas emissions means that additional SLCF emission reductions result in, at most, a small additional benefit of ~ 0.1 °C in the 2030–2040 time frame. © 2020, Battelle Memorial Institute.

Loading...
Thumbnail Image
Item

The role of methane in future climate strategies: mitigation potentials and climate impacts

2019, Harmsen, Mathijs, Mathijs, Detlef P., Bodirsky, Benjamin Leon, Chateau, Jean, Durand-Lasserve, Olivier, Drouet, Laurent, Fricko, Oliver, Fujimori, Shinichiro, Gernaat, David E.H.J., Hanaoka, Tatsuya, Hilaire, Jérôme, Keramidas, Kimon, Luderer, Gunnar, Moura, Maria Cecilia P., Sano, Fuminori, Smith, Steven J., Wada, Kenichi

This study examines model-specific assumptions and projections of methane (CH4) emissions in deep mitigation scenarios generated by integrated assessment models (IAMs). For this, scenarios of nine models are compared in terms of sectoral and regional CH4 emission reduction strategies, as well as resulting climate impacts. The models’ projected reduction potentials are compared to sector and technology-specific reduction potentials found in literature. Significant cost-effective and non-climate policy related reductions are projected in the reference case (10–36% compared to a “frozen emission factor” scenario in 2100). Still, compared to 2010, CH4 emissions are expected to rise steadily by 9–72% (up to 412 to 654 Mt CH4/year). Ambitious CO2 reduction measures could by themselves lead to a reduction of CH4 emissions due to a reduction of fossil fuels (22–48% compared to the reference case in 2100). However, direct CH4 mitigation is crucial and more effective in bringing down CH4 (50–74% compared to the reference case). Given the limited reduction potential, agriculture CH4 emissions are projected to constitute an increasingly larger share of total anthropogenic CH4 emissions in mitigation scenarios. Enteric fermentation in ruminants is in that respect by far the largest mitigation bottleneck later in the century with a projected 40–78% of total remaining CH4 emissions in 2100 in a strong (2 °C) climate policy case. © 2019, The Author(s).