Search Results

Now showing 1 - 6 of 6
  • Item
    An electrochemical in situ study of freezing and thawing of ionic liquids in carbon nanopores
    (Cambridge : Royal Society of Chemistry, 2014) Weingarth, Daniel; Drumm, Robert; Foelske-Schmitz, Annette; Kotz, Rüdiger; Presser, Volker
    Room temperature ionic liquids (RTILs) are an emerging class of electrolytes enabling high cell voltages and, in return, high energy density of advanced supercapacitors. Yet, the low temperature behavior, including freezing and thawing, is little understood when ions are confined in the narrow space of nanopores. This study shows that RTILs may show a tremendously different thermal behavior when comparing bulk with nanoconfined properties as a result of the increased surface energy of carbon pore walls. In particular, a continuous increase in viscosity is accompanied by slowed-down charge-discharge kinetics as seen with in situ electrochemical characterization. Freezing reversibly collapses the energy storage ability and thawing fully restores the initial energy density of the material. For the first time, a different thermal behavior in positively and negatively polarized electrodes is demonstrated. This leads to different freezing and melting points in the two electrodes. Compared to bulk, RTILs in the confinement of electrically charged nanopores show a high affinity for supercooling; that is, the electrode may freeze during heating.
  • Item
    Cylindrical Microparticles Composed of Mesoporous Silica Nanoparticles for the Targeted Delivery of a Small Molecule and a Macromolecular Drug to the Lungs: Exemplified with Curcumin and siRNA
    (Basel : MDPI, 2021) Fischer, Thorben; Winter, Inga; Drumm, Robert; Schneider, Marc
    The transport of macromolecular drugs such as oligonucleotides into the lungs has become increasingly relevant in recent years due to their high potency. However, the chemical structure of this group of drugs poses a hurdle to their delivery, caused by the negative charge, membrane impermeability and instability. For example, siRNA to reduce tumour necrosis factor alpha (TNF-α) secretion to reduce inflammatory signals has been successfully delivered by inhalation. In order to increase the effect of the treatment, a co-transport of another anti-inflammatory ingredient was applied. Combining curcumin-loaded mesoporous silica nanoparticles in nanostructured cylindrical microparticles stabilized by the layer-by-layer technique using polyanionic siRNA against TNF-α was used for demonstration. This system showed aerodynamic properties suited for lung deposition (mass median aerodynamic diameter of 2.85 ± 0.44 µm). Furthermore, these inhalable carriers showed no acute in vitro toxicity tested in both alveolar epithelial cells and macrophages up to 48 h incubation. Ultimately, TNF-α release was significantly reduced by the particles, showing an improved activity co-delivering both drugs using such a drug-delivery system for specific inhibition of TNF-α in the lungs.
  • Item
    Mechanisms of bonding effected by nanoparticles in zirconia coatings applied by spraying of suspensions
    (Saarbrücke : Leibniz-Institut für Neue Materialien, 2008) Adam, Jens; Aslan, Mesut; Drumm, Robert; Veith, Michael
    Zirconia coatings consisting of a mixture of coarse and fine grained zirconia powders prepared by spraying of suspensions and subsequent thermal treatment at limited temperatures (up to 500°C) are poor in adherence and in intrinsic mechanical strength. We have shown elsewhere that mechanical properties of these coatings can be improved clearly by adding a small amount of nanoscaled zirconia. Here, the structural and the chemical development of this coating material and of the nanoparticles is examined to gain information about the underlying bonding mechanisms. The applied temperature is relatively low in comparison to the usual onset temperature of accelerated sintering. Nevertheless, the results show that diffusion controlled material transport mechanisms play their role in bonding. The condensation of surface OH groups may participate in bonding, too. These first results confirm the potential of nanoparticles to act as inorganic binder. Additional research effort to clarify the underlying mechanisms in detail is of interest. For the practical side, it can be concluded that the resulting effect of mechanical consolidation of ceramic structures at relatively low temperatures enables new ceramic applications, for example a new type of ceramic coatings on metallic substrates.
  • Item
    Preparation of acoustic lenses by mechano-chemical synthesis and electrophoretic deposition of lead zirconium titanate (PZT) films
    (Saarbrücke : Leibniz-Institut für Neue Materialien, 2008) Bender, Michael; Drumm, Robert; Adam, Jens; Jakob, Annette; Lemor, Robert; Veith, Michael
    PZT powders has been synthesized via reactive dry milling using PbZrO3 and PbTiO3 as starting materials. Stabel suspensions of the PZT particles in ethanol (d50(Vol) = 115 nm) were obtained by a chemomechanical dispersion step. Teh electrophoretic deposition has been optimized varying the cell voltage and the PZT solid content in the suspension. PZT films have been deposited on platinum coated saphire. After drying, the films are densely packed and free of cracks. By using lithium acetate and lead acetate as a sinter aid it was possible to reduce the sintering temperature to 1050°C. A good electrode has been sputtered onto the piezoelectric films which then have been poled by the corona method. The circular PZT dots (...) with a thickness of 1 µm show the expected oscillation resonance at about 2 GHz and can be used in acoustic lenses, for example in acoustic microscopes.
  • Item
    Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine
    (London : BioMed Central, 2018) Weiss, Ingrid M.; Muth, Christina; Drumm, Robert; Kirchner, Helmut O.
    Background: The pathways of thermal instability of amino acids have been unknown. New mass spectrometric data allow unequivocal quantitative identification of the decomposition products. Results: Calorimetry, thermogravimetry and mass spectrometry were used to follow the thermal decomposition of the eight amino acids G, C, D, N, E, Q, R and H between 185 °C and 280 °C. Endothermic heats of decomposition between 72 and 151 kJ/mol are needed to form 12 to 70% volatile products. This process is neither melting nor sublimation. With exception of cysteine they emit mainly H2O, some NH3 and no CO2. Cysteine produces CO2 and little else. The reactions are described by polynomials, AA→a NH3+b H2O+c CO2+d H2S+e residue, with integer or half integer coefficients. The solid monomolecular residues are rich in peptide bonds. Conclusions: Eight of the 20 standard amino acids decompose at well-defined, characteristic temperatures, in contrast to commonly accepted knowledge. Products of decomposition are simple. The novel quantitative results emphasize the impact of water and cyclic condensates with peptide bonds and put constraints on hypotheses of the origin, state and stability of amino acids in the range between 200 °C and 300 °C.
  • Item
    Langzeitstabile Formtrennschichten auf BN-Basis für metallurgische Anwendungen : Schlussbericht
    (Hannover : Technische Informationsbibliothek (TIB), 2004) Schwetz, Karl; Adam, Jens; Drumm, Robert; Ehlen, Frank; Grossman, Kai; Hareesh, Nair
    [no abstract available]