Search Results

Now showing 1 - 10 of 17
  • Item
    Hyperfast second-order local solvers for efficient statistically preconditioned distributed optimization
    (Amsterdam : Elsevier, 2022) Dvurechensky, Pavel; Kamzolov, Dmitry; Lukashevich, Aleksandr; Lee, Soomin; Ordentlich, Erik; Uribe, César A.; Gasnikov, Alexander
    Statistical preconditioning enables fast methods for distributed large-scale empirical risk minimization problems. In this approach, multiple worker nodes compute gradients in parallel, which are then used by the central node to update the parameter by solving an auxiliary (preconditioned) smaller-scale optimization problem. The recently proposed Statistically Preconditioned Accelerated Gradient (SPAG) method [1] has complexity bounds superior to other such algorithms but requires an exact solution for computationally intensive auxiliary optimization problems at every iteration. In this paper, we propose an Inexact SPAG (InSPAG) and explicitly characterize the accuracy by which the corresponding auxiliary subproblem needs to be solved to guarantee the same convergence rate as the exact method. We build our results by first developing an inexact adaptive accelerated Bregman proximal gradient method for general optimization problems under relative smoothness and strong convexity assumptions, which may be of independent interest. Moreover, we explore the properties of the auxiliary problem in the InSPAG algorithm assuming Lipschitz third-order derivatives and strong convexity. For such problem class, we develop a linearly convergent Hyperfast second-order method and estimate the total complexity of the InSPAG method with hyperfast auxiliary problem solver. Finally, we illustrate the proposed method's practical efficiency by performing large-scale numerical experiments on logistic regression models. To the best of our knowledge, these are the first empirical results on implementing high-order methods on large-scale problems, as we work with data where the dimension is of the order of 3 million, and the number of samples is 700 million.
  • Item
    Accelerated variance-reduced methods for saddle-point problems
    (Amsterdam : Elsevier, 2022) Borodich, Ekaterina; Tominin, Vladislav; Tominin, Yaroslav; Kovalev, Dmitry; Gasnikov, Alexander; Dvurechensky, Pavel
    We consider composite minimax optimization problems where the goal is to find a saddle-point of a large sum of non-bilinear objective functions augmented by simple composite regularizers for the primal and dual variables. For such problems, under the average-smoothness assumption, we propose accelerated stochastic variance-reduced algorithms with optimal up to logarithmic factors complexity bounds. In particular, we consider strongly-convex-strongly-concave, convex-strongly-concave, and convex-concave objectives. To the best of our knowledge, these are the first nearly-optimal algorithms for this setting.
  • Item
    Generalized self-concordant analysis of Frank–Wolfe algorithms
    (Berlin ; Heidelberg : Springer, 2022) Dvurechensky, Pavel; Safin, Kamil; Shtern, Shimrit; Staudigl, Mathias
    Projection-free optimization via different variants of the Frank–Wolfe method has become one of the cornerstones of large scale optimization for machine learning and computational statistics. Numerous applications within these fields involve the minimization of functions with self-concordance like properties. Such generalized self-concordant functions do not necessarily feature a Lipschitz continuous gradient, nor are they strongly convex, making them a challenging class of functions for first-order methods. Indeed, in a number of applications, such as inverse covariance estimation or distance-weighted discrimination problems in binary classification, the loss is given by a generalized self-concordant function having potentially unbounded curvature. For such problems projection-free minimization methods have no theoretical convergence guarantee. This paper closes this apparent gap in the literature by developing provably convergent Frank–Wolfe algorithms with standard O(1/k) convergence rate guarantees. Based on these new insights, we show how these sublinearly convergent methods can be accelerated to yield linearly convergent projection-free methods, by either relying on the availability of a local liner minimization oracle, or a suitable modification of the away-step Frank–Wolfe method.
  • Item
    Inexact tensor methods and their application to stochastic convex optimization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Agafonov, Artem; Kamzolov, Dmitry; Dvurechensky, Pavel; Gasnikov, Alexander
    We propose a general non-accelerated tensor method under inexact information on higher- order derivatives, analyze its convergence rate, and provide sufficient conditions for this method to have similar complexity as the exact tensor method. As a corollary, we propose the first stochastic tensor method for convex optimization and obtain sufficient mini-batch sizes for each derivative.
  • Item
    Alternating minimization methods for strongly convex optimization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Tupitsa, Nazarii; Dvurechensky, Pavel; Gasnikov, Alexander
    We consider alternating minimization procedures for convex optimization problems with variable divided in many block, each block being amenable for minimization with respect to its variable with freezed other variables blocks. In the case of two blocks, we prove a linear convergence rate for alternating minimization procedure under Polyak-Łojasiewicz condition, which can be seen as a relaxation of the strong convexity assumption. Under strong convexity assumption in many-blocks setting we provide an accelerated alternating minimization procedure with linear rate depending on the square root of the condition number as opposed to condition number for the non-accelerated method.
  • Item
    Oracle complexity separation in convex optimization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Ivanova, Anastasiya; Gasnikov, Alexander; Dvurechensky, Pavel; Dvinskikh, Darina; Tyurin, Alexander; Vorontsova, Evgeniya; Pasechnyuk, Dmitry
    Ubiquitous in machine learning regularized empirical risk minimization problems are often composed of several blocks which can be treated using different types of oracles, e.g., full gradient, stochastic gradient or coordinate derivative. Optimal oracle complexity is known and achievable separately for the full gradient case, the stochastic gradient case, etc. We propose a generic framework to combine optimal algorithms for different types of oracles in order to achieve separate optimal oracle complexity for each block, i.e. for each block the corresponding oracle is called the optimal number of times for a given accuracy. As a particular example, we demonstrate that for a combination of a full gradient oracle and either a stochastic gradient oracle or a coordinate descent oracle our approach leads to the optimal number of oracle calls separately for the full gradient part and the stochastic/coordinate descent part.
  • Item
    Inexact model: A framework for optimization and variational inequalities
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Stonyakin, Fedor; Gasnikov, Alexander; Tyurin, Alexander; Pasechnyuk, Dmitry; Agafonov, Artem; Dvurechensky, Pavel; Dvinskikh, Darina; Piskunova, Victorya
    In this paper we propose a general algorithmic framework for first-order methods in optimization in a broad sense, including minimization problems, saddle-point problems and variational inequalities. This framework allows to obtain many known methods as a special case, the list including accelerated gradient method, composite optimization methods, level-set methods, proximal methods. The idea of the framework is based on constructing an inexact model of the main problem component, i.e. objective function in optimization or operator in variational inequalities. Besides reproducing known results, our framework allows to construct new methods, which we illustrate by constructing a universal method for variational inequalities with composite structure. This method works for smooth and non-smooth problems with optimal complexity without a priori knowledge of the problem smoothness. We also generalize our framework for strongly convex objectives and strongly monotone variational inequalities.
  • Item
    Inexact relative smoothness and strong convexity for optimization and variational inequalities by inexact model
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Stonyakin, Fedor; Gasnikov, Alexander; Tyurin, Alexander; Pasechnyuk, Dmitry; Agafonov, Artem; Dvurechensky, Pavel; Dvinskikh, Darina; Artamonov, Sergei; Piskunova, Victorya
    In this paper we propose a general algorithmic framework for first-order methods in optimization in a broad sense, including minimization problems, saddle-point problems and variational inequalities. This framework allows to obtain many known methods as a special case, the list including accelerated gradient method, composite optimization methods, level-set methods, Bregman proximal methods. The idea of the framework is based on constructing an inexact model of the main problem component, i.e. objective function in optimization or operator in variational inequalities. Besides reproducing known results, our framework allows to construct new methods, which we illustrate by constructing a universal conditional gradient method and universal method for variational inequalities with composite structure. These method works for smooth and non-smooth problems with optimal complexity without a priori knowledge of the problem smoothness. As a particular case of our general framework, we introduce relative smoothness for operators and propose an algorithm for VIs with such operator. We also generalize our framework for relatively strongly convex objectives and strongly monotone variational inequalities.
  • Item
    On accelerated alternating minimization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Guminov, Sergey; Dvurechensky, Pavel; Gasnikov, Alexander
    Alternating minimization (AM) optimization algorithms have been known for a long time and are of importance in machine learning problems, among which we are mostly motivated by approximating optimal transport distances. AM algorithms assume that the decision variable is divided into several blocks and minimization in each block can be done explicitly or cheaply with high accuracy. The ubiquitous Sinkhorn's algorithm can be seen as an alternating minimization algorithm for the dual to the entropy-regularized optimal transport problem. We introduce an accelerated alternating minimization method with a $1/k^2$ convergence rate, where $k$ is the iteration counter. This improves over known bound $1/k$ for general AM methods and for the Sinkhorn's algorithm. Moreover, our algorithm converges faster than gradient-type methods in practice as it is free of the choice of the step-size and is adaptive to the local smoothness of the problem. We show that the proposed method is primal-dual, meaning that if we apply it to a dual problem, we can reconstruct the solution of the primal problem with the same convergence rate. We apply our method to the entropy regularized optimal transport problem and show experimentally, that it outperforms Sinkhorn's algorithm.
  • Item
    Advances in low-memory subgradient optimization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Dvurechensky, Pavel; Gasnikov, Alexander; Nurminski, Evgeni; Stonyakin, Fedor
    One of the main goals in the development of non-smooth optimization is to cope with high dimensional problems by decomposition, duality or Lagrangian relaxation which greatly reduces the number of variables at the cost of worsening differentiability of objective or constraints. Small or medium dimensionality of resulting non-smooth problems allows to use bundle-type algorithms to achieve higher rates of convergence and obtain higher accuracy, which of course came at the cost of additional memory requirements, typically of the order of n2, where n is the number of variables of non-smooth problem. However with the rapid development of more and more sophisticated models in industry, economy, finance, et all such memory requirements are becoming too hard to satisfy. It raised the interest in subgradient-based low-memory algorithms and later developments in this area significantly improved over their early variants still preserving O(n) memory requirements. To review these developments this chapter is devoted to the black-box subgradient algorithms with the minimal requirements for the storage of auxiliary results, which are necessary to execute these algorithms. To provide historical perspective this survey starts with the original result of N.Z. Shor which opened this field with the application to the classical transportation problem. The theoretical complexity bounds for smooth and non-smooth convex and quasi-convex optimization problems are briefly exposed in what follows to introduce to the relevant fundamentals of non-smooth optimization. Special attention in this section is given to the adaptive step-size policy which aims to attain lowest complexity bounds. Unfortunately the non-differentiability of objective function in convex optimization essentially slows down the theoretical low bounds for the rate of convergence in subgradient optimization compared to the smooth case but there are different modern techniques that allow to solve non-smooth convex optimization problems faster then dictate lower complexity bounds. In this work the particular attention is given to Nesterov smoothing technique, Nesterov Universal approach, and Legendre (saddle point) representation approach. The new results on Universal Mirror Prox algorithms represent the original parts of the survey. To demonstrate application of non-smooth convex optimization algorithms for solution of huge-scale extremal problems we consider convex optimization problems with non-smooth functional constraints and propose two adaptive Mirror Descent methods. The first method is of primal-dual variety and proved to be optimal in terms of lower oracle bounds for the class of Lipschitz-continuous convex objective and constraints. The advantages of application of this method to sparse Truss Topology Design problem are discussed in certain details. The second method can be applied for solution of convex and quasi-convex optimization problems and is optimal in a sense of complexity bounds. The conclusion part of the survey contains the important references that characterize recent developments of non-smooth convex optimization.