Search Results

Now showing 1 - 10 of 18
  • Item
    Hyperfast second-order local solvers for efficient statistically preconditioned distributed optimization
    (Amsterdam : Elsevier, 2022) Dvurechensky, Pavel; Kamzolov, Dmitry; Lukashevich, Aleksandr; Lee, Soomin; Ordentlich, Erik; Uribe, César A.; Gasnikov, Alexander
    Statistical preconditioning enables fast methods for distributed large-scale empirical risk minimization problems. In this approach, multiple worker nodes compute gradients in parallel, which are then used by the central node to update the parameter by solving an auxiliary (preconditioned) smaller-scale optimization problem. The recently proposed Statistically Preconditioned Accelerated Gradient (SPAG) method [1] has complexity bounds superior to other such algorithms but requires an exact solution for computationally intensive auxiliary optimization problems at every iteration. In this paper, we propose an Inexact SPAG (InSPAG) and explicitly characterize the accuracy by which the corresponding auxiliary subproblem needs to be solved to guarantee the same convergence rate as the exact method. We build our results by first developing an inexact adaptive accelerated Bregman proximal gradient method for general optimization problems under relative smoothness and strong convexity assumptions, which may be of independent interest. Moreover, we explore the properties of the auxiliary problem in the InSPAG algorithm assuming Lipschitz third-order derivatives and strong convexity. For such problem class, we develop a linearly convergent Hyperfast second-order method and estimate the total complexity of the InSPAG method with hyperfast auxiliary problem solver. Finally, we illustrate the proposed method's practical efficiency by performing large-scale numerical experiments on logistic regression models. To the best of our knowledge, these are the first empirical results on implementing high-order methods on large-scale problems, as we work with data where the dimension is of the order of 3 million, and the number of samples is 700 million.
  • Item
    First-Order Methods for Convex Optimization
    (Amsterdam : Elsevier, 2021) Dvurechensky, Pavel; Shtern, Shimrit; Staudigl, Mathias
    First-order methods for solving convex optimization problems have been at the forefront of mathematical optimization in the last 20 years. The rapid development of this important class of algorithms is motivated by the success stories reported in various applications, including most importantly machine learning, signal processing, imaging and control theory. First-order methods have the potential to provide low accuracy solutions at low computational complexity which makes them an attractive set of tools in large-scale optimization problems. In this survey, we cover a number of key developments in gradient-based optimization methods. This includes non-Euclidean extensions of the classical proximal gradient method, and its accelerated versions. Additionally we survey recent developments within the class of projection-free methods, and proximal versions of primal-dual schemes. We give complete proofs for various key results, and highlight the unifying aspects of several optimization algorithms.
  • Item
    Accelerated variance-reduced methods for saddle-point problems
    (Amsterdam : Elsevier, 2022) Borodich, Ekaterina; Tominin, Vladislav; Tominin, Yaroslav; Kovalev, Dmitry; Gasnikov, Alexander; Dvurechensky, Pavel
    We consider composite minimax optimization problems where the goal is to find a saddle-point of a large sum of non-bilinear objective functions augmented by simple composite regularizers for the primal and dual variables. For such problems, under the average-smoothness assumption, we propose accelerated stochastic variance-reduced algorithms with optimal up to logarithmic factors complexity bounds. In particular, we consider strongly-convex-strongly-concave, convex-strongly-concave, and convex-concave objectives. To the best of our knowledge, these are the first nearly-optimal algorithms for this setting.
  • Item
    Generalized self-concordant analysis of Frank–Wolfe algorithms
    (Berlin ; Heidelberg : Springer, 2022) Dvurechensky, Pavel; Safin, Kamil; Shtern, Shimrit; Staudigl, Mathias
    Projection-free optimization via different variants of the Frank–Wolfe method has become one of the cornerstones of large scale optimization for machine learning and computational statistics. Numerous applications within these fields involve the minimization of functions with self-concordance like properties. Such generalized self-concordant functions do not necessarily feature a Lipschitz continuous gradient, nor are they strongly convex, making them a challenging class of functions for first-order methods. Indeed, in a number of applications, such as inverse covariance estimation or distance-weighted discrimination problems in binary classification, the loss is given by a generalized self-concordant function having potentially unbounded curvature. For such problems projection-free minimization methods have no theoretical convergence guarantee. This paper closes this apparent gap in the literature by developing provably convergent Frank–Wolfe algorithms with standard O(1/k) convergence rate guarantees. Based on these new insights, we show how these sublinearly convergent methods can be accelerated to yield linearly convergent projection-free methods, by either relying on the availability of a local liner minimization oracle, or a suitable modification of the away-step Frank–Wolfe method.
  • Item
    Inexact tensor methods and their application to stochastic convex optimization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Agafonov, Artem; Kamzolov, Dmitry; Dvurechensky, Pavel; Gasnikov, Alexander
    We propose a general non-accelerated tensor method under inexact information on higher- order derivatives, analyze its convergence rate, and provide sufficient conditions for this method to have similar complexity as the exact tensor method. As a corollary, we propose the first stochastic tensor method for convex optimization and obtain sufficient mini-batch sizes for each derivative.
  • Item
    Alternating minimization methods for strongly convex optimization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Tupitsa, Nazarii; Dvurechensky, Pavel; Gasnikov, Alexander
    We consider alternating minimization procedures for convex optimization problems with variable divided in many block, each block being amenable for minimization with respect to its variable with freezed other variables blocks. In the case of two blocks, we prove a linear convergence rate for alternating minimization procedure under Polyak-Łojasiewicz condition, which can be seen as a relaxation of the strong convexity assumption. Under strong convexity assumption in many-blocks setting we provide an accelerated alternating minimization procedure with linear rate depending on the square root of the condition number as opposed to condition number for the non-accelerated method.
  • Item
    Oracle complexity separation in convex optimization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Ivanova, Anastasiya; Gasnikov, Alexander; Dvurechensky, Pavel; Dvinskikh, Darina; Tyurin, Alexander; Vorontsova, Evgeniya; Pasechnyuk, Dmitry
    Ubiquitous in machine learning regularized empirical risk minimization problems are often composed of several blocks which can be treated using different types of oracles, e.g., full gradient, stochastic gradient or coordinate derivative. Optimal oracle complexity is known and achievable separately for the full gradient case, the stochastic gradient case, etc. We propose a generic framework to combine optimal algorithms for different types of oracles in order to achieve separate optimal oracle complexity for each block, i.e. for each block the corresponding oracle is called the optimal number of times for a given accuracy. As a particular example, we demonstrate that for a combination of a full gradient oracle and either a stochastic gradient oracle or a coordinate descent oracle our approach leads to the optimal number of oracle calls separately for the full gradient part and the stochastic/coordinate descent part.
  • Item
    Inexact model: A framework for optimization and variational inequalities
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Stonyakin, Fedor; Gasnikov, Alexander; Tyurin, Alexander; Pasechnyuk, Dmitry; Agafonov, Artem; Dvurechensky, Pavel; Dvinskikh, Darina; Piskunova, Victorya
    In this paper we propose a general algorithmic framework for first-order methods in optimization in a broad sense, including minimization problems, saddle-point problems and variational inequalities. This framework allows to obtain many known methods as a special case, the list including accelerated gradient method, composite optimization methods, level-set methods, proximal methods. The idea of the framework is based on constructing an inexact model of the main problem component, i.e. objective function in optimization or operator in variational inequalities. Besides reproducing known results, our framework allows to construct new methods, which we illustrate by constructing a universal method for variational inequalities with composite structure. This method works for smooth and non-smooth problems with optimal complexity without a priori knowledge of the problem smoothness. We also generalize our framework for strongly convex objectives and strongly monotone variational inequalities.
  • Item
    Inexact relative smoothness and strong convexity for optimization and variational inequalities by inexact model
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Stonyakin, Fedor; Gasnikov, Alexander; Tyurin, Alexander; Pasechnyuk, Dmitry; Agafonov, Artem; Dvurechensky, Pavel; Dvinskikh, Darina; Artamonov, Sergei; Piskunova, Victorya
    In this paper we propose a general algorithmic framework for first-order methods in optimization in a broad sense, including minimization problems, saddle-point problems and variational inequalities. This framework allows to obtain many known methods as a special case, the list including accelerated gradient method, composite optimization methods, level-set methods, Bregman proximal methods. The idea of the framework is based on constructing an inexact model of the main problem component, i.e. objective function in optimization or operator in variational inequalities. Besides reproducing known results, our framework allows to construct new methods, which we illustrate by constructing a universal conditional gradient method and universal method for variational inequalities with composite structure. These method works for smooth and non-smooth problems with optimal complexity without a priori knowledge of the problem smoothness. As a particular case of our general framework, we introduce relative smoothness for operators and propose an algorithm for VIs with such operator. We also generalize our framework for relatively strongly convex objectives and strongly monotone variational inequalities.
  • Item
    On accelerated alternating minimization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Guminov, Sergey; Dvurechensky, Pavel; Gasnikov, Alexander
    Alternating minimization (AM) optimization algorithms have been known for a long time and are of importance in machine learning problems, among which we are mostly motivated by approximating optimal transport distances. AM algorithms assume that the decision variable is divided into several blocks and minimization in each block can be done explicitly or cheaply with high accuracy. The ubiquitous Sinkhorn's algorithm can be seen as an alternating minimization algorithm for the dual to the entropy-regularized optimal transport problem. We introduce an accelerated alternating minimization method with a $1/k^2$ convergence rate, where $k$ is the iteration counter. This improves over known bound $1/k$ for general AM methods and for the Sinkhorn's algorithm. Moreover, our algorithm converges faster than gradient-type methods in practice as it is free of the choice of the step-size and is adaptive to the local smoothness of the problem. We show that the proposed method is primal-dual, meaning that if we apply it to a dual problem, we can reconstruct the solution of the primal problem with the same convergence rate. We apply our method to the entropy regularized optimal transport problem and show experimentally, that it outperforms Sinkhorn's algorithm.