Search Results

Now showing 1 - 3 of 3
  • Item
    IoT-Based Sensor Data Fusion for Determining Optimality Degrees of Microclimate Parameters in Commercial Greenhouse Production of Tomato
    (Basel : MDPI, 2020) Rezvani, Sayed Moin-eddin; Abyaneh, Hamid Zare; Shamshiri, Redmond R.; Balasundram, Siva K.; Dworak, Volker; Goodarzi, Mohsen; Sultan, Muhammad; Mahns, Benjamin
    Optimum microclimate parameters, including air temperature (T), relative humidity (RH) and vapor pressure deficit (VPD) that are uniformly distributed inside greenhouse crop production systems are essential to prevent yield loss and fruit quality. The objective of this research was to determine the spatial and temporal variations in the microclimate data of a commercial greenhouse with tomato plants located in the mid-west of Iran. For this purpose, wireless sensor data fusion was incorporated with a membership function model called Optimality Degree (OptDeg) for real-time monitoring and dynamic assessment of T, RH and VPD in different light conditions and growth stages of tomato. This approach allows growers to have a simultaneous projection of raw data into a normalized index between 0 and 1. Custom-built hardware and software based on the concept of the Internet-of-Things, including Low-Power Wide-Area Network (LoRaWAN) transmitter nodes, a multi-channel LoRaWAN gateway and a web-based data monitoring dashboard were used for data collection, data processing and monitoring. The experimental approach consisted of the collection of meteorological data from the external environment by means of a weather station and via a grid of 20 wireless sensor nodes distributed in two horizontal planes at two different heights inside the greenhouse. Offline data processing for sensors calibration and model validation was carried in multiple MATLAB Simulink blocks. Preliminary results revealed a significant deviation of the microclimate parameters from optimal growth conditions for tomato cultivation due to the inaccurate timer-based heating and cooling control systems used in the greenhouse. The mean OptDeg of T, RH and VPD were 0.67, 0.94, 0.94 in January, 0.45, 0.36, 0.42 in June and 0.44, 0.0, 0.12 in July, respectively. An in-depth analysis of data revealed that averaged OptDeg values, as well as their spatial variations in the horizontal profile were closer to the plants’ comfort zone in the cold season as compared with those in the warm season. This was attributed to the use of heating systems in the cold season and the lack of automated cooling devices in the warm season. This study confirmed the applicability of using IoT sensors for real-time model-based assessment of greenhouse microclimate on a commercial scale. The presented IoT sensor node and the Simulink model provide growers with a better insight into interpreting crop growth environment. The outcome of this research contributes to the improvement of closed-field cultivation of tomato by providing an integrated decision-making framework that explores microclimate variation at different growth stages in the production season.
  • Item
    Terahertz spectroscopy for proximal soil sensing: An approach to particle size analysis
    (Basel : MDPI, 2017) Dworak, Volker; Mahns, Benjamin; Selbeck, Jörn; Gebbers, Robin; Weltzien, Cornelia
    Spatially resolved soil parameters are some of the most important pieces of information for precision agriculture. These parameters, especially the particle size distribution (texture), are costly to measure by conventional laboratory methods, and thus, in situ assessment has become the focus of a new discipline called proximal soil sensing. Terahertz (THz) radiation is a promising method for nondestructive in situ measurements. The THz frequency range from 258 gigahertz (GHz) to 350 GHz provides a good compromise between soil penetration and the interaction of the electromagnetic waves with soil compounds. In particular, soil physical parameters influence THz measurements. This paper presents investigations of the spectral transmission signals from samples of different particle size fractions relevant for soil characterization. The sample thickness ranged from 5 to 17 mm. The transmission of THz waves was affected by the main mineral particle fractions, sand, silt and clay. The resulting signal changes systematically according to particle sizes larger than half the wavelength. It can be concluded that THz spectroscopic measurements provide information about soil texture and penetrate samples with thicknesses in the cm range.
  • Item
    Hyperspectral Imaging Tera Hertz System for Soil Analysis : Initial Results
    (Basel : MDPI, 2020) Dworak, Volker; Mahns, Benjamin; Selbeck, Jörn; Gebbers, Robin; Weltzien, Cornelia
    Analyzing soils using conventional methods is often time consuming and costly due to their complexity. These methods require soil sampling (e.g., by augering), pretreatment of samples (e.g., sieving, extraction), and wet chemical analysis in the laboratory. Researchers are seeking alternative sensor-based methods that can provide immediate results with little or no excavation and pretreatment of samples. Currently, visible and infrared spectroscopy, electrical resistivity, gamma ray spectroscopy, and X-ray spectroscopy have been investigated extensively for their potential utility in soil sensing. Little research has been conducted on the application of THz (Tera Hertz) spectroscopy in soil science. The Tera Hertz band covers the frequency range between 100 GHz and 10 THz of the electromagnetic spectrum. One important feature of THz radiation is its correspondence with the particle size of the fine fraction of soil minerals (clay < 2 µm to sand < 2 mm). The particle size distribution is a fundamental soil property that governs soil water and nutrient content, among other characteristics. The interaction of THz radiation with soil particles creates detectable Mie scattering, which is the elastic scattering of electromagnetic waves by particles whose diameter corresponds approximately to the wavelength of the radiation. However, single-spot Mie scattering spectra are difficult to analyze and the understanding of interaction between THz radiation and soil material requires basic research. To improve the interpretation of THz spectra, a hyperspectral imaging system was developed. The addition of the spatial dimension to THz spectra helps to detect relevant features. Additionally, multiple samples can be scanned in parallel and measured under identical conditions, and the high number of data points within an image can improve the statistical accuracy. Technical details of the newly designed hyperspectral imaging THz system working from 250 to 370 GHz are provided. Results from measurements of different soil samples and buried objects in soil demonstrated its performance. The system achieved an optical resolution of about 2 mm. The sensitivity of signal damping to the changes in particle size of 100 µm is about 10 dB. Therefore, particle size variations in the µm range should be detectable. In conclusion, automated hyperspectral imaging reduced experimental effort and time consumption, and provided reliable results because of the measurement of hundreds of sample positions in one run. At this stage, the proposed setup cannot replace the current standard laboratory methods, but the present study represents the initial step to develop a new automated method for soil analysis and imaging.