Search Results

Now showing 1 - 2 of 2
  • Item
    Terahertz spectroscopy for proximal soil sensing: An approach to particle size analysis
    (Basel : MDPI, 2017) Dworak, Volker; Mahns, Benjamin; Selbeck, Jörn; Gebbers, Robin; Weltzien, Cornelia
    Spatially resolved soil parameters are some of the most important pieces of information for precision agriculture. These parameters, especially the particle size distribution (texture), are costly to measure by conventional laboratory methods, and thus, in situ assessment has become the focus of a new discipline called proximal soil sensing. Terahertz (THz) radiation is a promising method for nondestructive in situ measurements. The THz frequency range from 258 gigahertz (GHz) to 350 GHz provides a good compromise between soil penetration and the interaction of the electromagnetic waves with soil compounds. In particular, soil physical parameters influence THz measurements. This paper presents investigations of the spectral transmission signals from samples of different particle size fractions relevant for soil characterization. The sample thickness ranged from 5 to 17 mm. The transmission of THz waves was affected by the main mineral particle fractions, sand, silt and clay. The resulting signal changes systematically according to particle sizes larger than half the wavelength. It can be concluded that THz spectroscopic measurements provide information about soil texture and penetrate samples with thicknesses in the cm range.
  • Item
    Application of Terahertz radiation to soil measurements: Initial results
    (Basel : MDPI, 2011) Dworak, Volker; Augustin, Sven; Gebbers, Robin
    Developing soil sensors with the possibility of continuous online measurement is a major challenge in soil science. Terahertz (THz) electromagnetic radiation may provide the opportunity for the measurement of organic material density, water content and other soil parameters at different soil depths. Penetration depth and information content is important for a functional soil sensor. Therefore, we present initial research on the analysis of absorption coefficients of four different soil samples by means of THz transmission measurements. An optimized soil sample holder to determine absorption coefficients was used. This setup improves data acquisition because interface reflections can be neglected. Frequencies of 340 GHz to 360 GHz and 1.627 THz to 2.523 THz provided information about an existing frequency dependency. The results demonstrate the potential of this THz approach for both soil analysis and imaging of buried objects. Therefore, the THz approach allows different soil samples to be distinguished according to their different absorption properties so that relations among soil parameters may be established in future.