Search Results

Now showing 1 - 2 of 2
  • Item
    Towards the better: Intrinsic property amelioration in bulk metallic glasses
    (London : Nature Publishing Group, 2016) Sarac, Baran; Zhang, Long; Kosiba, Konrad; Pauly, Simon; Stoica, Mihai; Eckert, Jürgen
    Tailoring the intrinsic length-scale effects in bulk metallic glasses (BMGs) via post-heat treatment necessitates a systematic analyzing strategy. Although various achievements were made in the past years to structurally enhance the properties of different BMG alloys, the influence of short-term sub-glass transition annealing on the relaxation kinetics is still not fully covered. Here, we aim for unraveling the connection between the physical, (thermo)mechanical and structural changes as a function of selected pre-annealing temperatures and time scales with an in-house developed Cu46Zr44Al8Hf2 based BMG alloy. The controlled formation of nanocrystals below 50 nm with homogenous distribution inside the matrix phase via thermal treatment increase the material’s resistance to strain softening by almost an order of magnitude. The present work determines the design aspects of metallic glasses with enhanced mechanical properties via nanostructural modifications, while postulating a counter-argument to the intrinsic property degradation accounted for long-term annealing.
  • Item
    Correlation between structural heterogeneity and plastic deformation for phase separating FeCu metallic glasses
    (London : Nature Publishing Group, 2016) Peng, Chuan-Xiao; Song, Kai-Kai; Wang, Li; Şopu, Daniel; Pauly, Simon; Eckert, Jürgen
    Unlike crystalline metals, the plastic deformation of metallic glasses (MGs) involves a competition between disordering and structural relaxation ordering, which is not well understood, yet. Molecular dynamics (MD) simulations were performed to investigate the evolutions of strain localizations, short-range order (SRO) as well as the free volume in the glass during compressive deformation of Fe50Cu50 MGs with different degrees of phase separation. Our findings indicate that the free volume in the phase separating MGs decreases while the shear strain localizations increase with increasing degree of phase separation. Cu-centered clusters show higher potential energies and Voronoi volumes, and bear larger local shear strains. On the other hand, Fe-centered pentagon-rich clusters in Cu-rich regions seem to play an important role to resist the shear transformation. The dilatation or annihilation of Voronoi volumes is due to the competition between ordering via structural relaxation and shear stress-induced deformation. The present study could provide a better understanding of the relationship between the structural inhomogeneity and the deformation of MGs.