Search Results

Now showing 1 - 4 of 4
  • Item
    Deformation at ambient and high temperature of in situ Laves phases-ferrite composites
    (Bristol : IOP Publishing, 2014) Donnadieu, Patricia; Pohlmann, Carsten; Scudino, Sergio; Blandin, Jean-Jacques; Surreddi, Kumar Babu; Eckert, Jürgen
    The mechanical behavior of a Fe80Zr10Cr10 alloy has been studied at ambient and high temperature. This Fe80Zr10Cr10 alloy, whoose microstructure is formed by alternate lamellae of Laves phase and ferrite, constitutes a very simple example of an in situ CMA phase composite. The role of the Laves phase type was investigated in a previous study while the present work focuses on the influence of the microstructure length scale owing to a series of alloys cast at different cooling rates that display microstructures with Laves phase lamellae width ranging from ∼50 nm to ∼150 nm. Room temperature compression tests have revealed a very high strength (up to 2 GPa) combined with a very high ductility (up to 35%). Both strength and ductility increase with reduction of the lamella width. High temperature compression tests have shown that a high strength (900 MPa) is maintained up to 873 K. Microstructural study of the deformed samples suggests that the confinement of dislocations in the ferrite lamellae is responsible for strengthening at both ambient and high temperature. The microstructure scale in addition to CMA phase structural features stands then as a key parameter for optimization of mechanical properties of CMA in situ composites.
  • Item
    Processing of Al–12Si–TNM composites by selective laser melting and evaluation of compressive and wear properties
    (Cambridge : Cambridge University Press, 2015) Prashantha, Konda G.; Scudino, Sergio; Chaubey, Anil K.; Löber, Lukas; Wang, Pei; Attar, Hooyar; Schimansky, Frank P.; Pyczak, Florian; Eckert, Jürgen
    Al-12Si (80 vol%)-Ti52.4Al42.2Nb4.4Mo0.9B0.06 (at.%) (TNM) composites were successfully produced by the selective laser melting (SLM). Detailed structural and microstructural analysis shows the formation of the Al6MoTi intermetallic phase due to the reaction of the TNM reinforcement with the Al-12Si matrix during SLM. Compression tests reveal that the composites exhibit significantly improved properties (∼140 and ∼160 MPa higher yield and ultimate compressive strengths, respectively) compared with the Al-12Si matrix. However, the samples break at ∼6% total strain under compression, thus showing a reduced plasticity of the composites. Sliding wear tests were carried out for both the Al-12Si matrix and the Al-12Si-TNM composites. The composites perform better under sliding wear conditions and the wear rate increases with increasing loads. At high loads, the wear takes place at three different rates and the wear rate decreases with increasing experiment duration.
  • Item
    Structural and mechanical characterization of Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 bulk metallic glass
    (Basel : MDPI, 2011) Prashanth, Konda G.; Scudino, Sergio; Khoshkhoo, Mohsen Samadi; Surreddi, Kumar B.; Stoica, Mihai; Vaughan, Gavin; Eckert, Jürgen
    Thermal stability, structure and mechanical properties of the multi-component Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 bulk metallic glass have been studied in detail. The glassy material displays good thermal stability against crystallization and a fairly large supercooled liquid region of 52 K. During heating, the alloy transforms into a metastable icosahedral quasicrystalline phase in the first stage of crystallization. At high temperatures, the quasicrystalline phase undergoes a transformation to form tetragonal and cubic NiZr2-type phases. Room-temperature compression tests of the as-cast sample show good mechanical properties, namely, high compressive strength of about 1,630 MPa and fracture strain of 3.3%. This is combined with a density of 6.32 g/cm3 and values of Poisson’s ratio and Young’s modulus of 0.377 and 77 GPa, respectively. The mechanical properties of the glass can be further improved by cold rolling. The compressive strength rises to 1,780 MPa and the fracture strain increases to 8.3% for the material cold-rolled to a diameter reduction of 10%.
  • Item
    Production of porous β-Type Ti–40Nb alloy for biomedical applications: Comparison of selective laser melting and hot pressing
    (Basel : MDPI, 2013) Zhuravleva, Ksenia; Bönisch, Matthias; Prashanth, Konda Gokuldoss; Hempel, Ute; Helth, Arne; Gemming, Thomas; Calin, Mariana; Scudino, Sergio; Schultz, Ludwig; Eckert, Jürgen; Gebert, Annett
    We used selective laser melting (SLM) and hot pressing of mechanically-alloyed β-type Ti–40Nb powder to fabricate macroporous bulk specimens (solid cylinders). The total porosity, compressive strength, and compressive elastic modulus of the SLM-fabricated material were determined as 17% ± 1%, 968 ± 8 MPa, and 33 ± 2 GPa, respectively. The alloy’s elastic modulus is comparable to that of healthy cancellous bone. The comparable results for the hot-pressed material were 3% ± 2%, 1400 ± 19 MPa, and 77 ± 3 GPa. This difference in mechanical properties results from different porosity and phase composition of the two alloys. Both SLM-fabricated and hot-pressed cylinders demonstrated good in vitro biocompatibility. The presented results suggest that the SLM-fabricated alloy may be preferable to the hot-pressed alloy for biomedical applications, such as the manufacture of load-bearing metallic components for total joint replacements.