Search Results

Now showing 1 - 3 of 3
  • Item
    Structural and mechanical characterization of Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 bulk metallic glass
    (Basel : MDPI, 2011) Prashanth, Konda G.; Scudino, Sergio; Khoshkhoo, Mohsen Samadi; Surreddi, Kumar B.; Stoica, Mihai; Vaughan, Gavin; Eckert, Jürgen
    Thermal stability, structure and mechanical properties of the multi-component Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 bulk metallic glass have been studied in detail. The glassy material displays good thermal stability against crystallization and a fairly large supercooled liquid region of 52 K. During heating, the alloy transforms into a metastable icosahedral quasicrystalline phase in the first stage of crystallization. At high temperatures, the quasicrystalline phase undergoes a transformation to form tetragonal and cubic NiZr2-type phases. Room-temperature compression tests of the as-cast sample show good mechanical properties, namely, high compressive strength of about 1,630 MPa and fracture strain of 3.3%. This is combined with a density of 6.32 g/cm3 and values of Poisson’s ratio and Young’s modulus of 0.377 and 77 GPa, respectively. The mechanical properties of the glass can be further improved by cold rolling. The compressive strength rises to 1,780 MPa and the fracture strain increases to 8.3% for the material cold-rolled to a diameter reduction of 10%.
  • Item
    Production of porous β-Type Ti–40Nb alloy for biomedical applications: Comparison of selective laser melting and hot pressing
    (Basel : MDPI, 2013) Zhuravleva, Ksenia; Bönisch, Matthias; Prashanth, Konda Gokuldoss; Hempel, Ute; Helth, Arne; Gemming, Thomas; Calin, Mariana; Scudino, Sergio; Schultz, Ludwig; Eckert, Jürgen; Gebert, Annett
    We used selective laser melting (SLM) and hot pressing of mechanically-alloyed β-type Ti–40Nb powder to fabricate macroporous bulk specimens (solid cylinders). The total porosity, compressive strength, and compressive elastic modulus of the SLM-fabricated material were determined as 17% ± 1%, 968 ± 8 MPa, and 33 ± 2 GPa, respectively. The alloy’s elastic modulus is comparable to that of healthy cancellous bone. The comparable results for the hot-pressed material were 3% ± 2%, 1400 ± 19 MPa, and 77 ± 3 GPa. This difference in mechanical properties results from different porosity and phase composition of the two alloys. Both SLM-fabricated and hot-pressed cylinders demonstrated good in vitro biocompatibility. The presented results suggest that the SLM-fabricated alloy may be preferable to the hot-pressed alloy for biomedical applications, such as the manufacture of load-bearing metallic components for total joint replacements.
  • Item
    Wear Behavior of a Heat-Treatable Al-3.5Cu-1.5Mg-1Si Alloy Manufactured by Selective Laser Melting
    (Basel : MDPI, 2021) Wang, Pei; Lei, Yang; Qi, Jun-Fang; Yu, Si-Jie; Setchi, Rossitza; Wu, Ming-Wei; Eckert, Jürgen; Li, Hai-Chao; Scudino, Sergio
    In this study, the wear behavior of a heat-treatable Al-7Si-0.5Mg-0.5Cu alloy fabricated by selective laser melting was investigated systematically. Compared with the commercial homogenized AA2024 alloy, the fine secondary phase of the SLM Al-Cu-Mg-Si alloy leads to a low specific wear rate (1.8 ± 0.11 × 10-4 mm3(Nm)-1) and a low average coefficient of friction (0.40 ± 0.01). After the T6 heat treatment, the SLM Al-Cu-Mg-Si alloy exhibits a lower specific wear rate (1.48 ± 0.02 × 10-4 mm3(Nm)-1), but a similar average coefficient of friction (0.34 ± 0.01) as the heat-treated AA2024 alloy. Altogether, the SLM Al-3.5Cu-1.5Mg-1Si alloy is suitable for the achievement of not only superior mechanical performance, but also improved tribological properties.