Search Results

Now showing 1 - 4 of 4
  • Item
    Mechanical and structural investigation of porous bulk metallic glasses
    (Basel : MDPI, 2015) Wu, Dianyu; Song, Kaikai; Cao, Chongde; Li, Ran; Wang, Gang; Wu, Yuan; Wan, Feng; Ding, Fuli; Shi, Yue; Bai, Xiaojun; Kaban, Ivan; Eckert, Jürgen
    The intrinsic properties of advanced alloy systems can be altered by changing their microstructural features. Here, we present a highly efficient method to produce and characterize structures with systematically-designed pores embedded inside. The fabrication stage involves a combination of photolithography and deep reactive ion etching of a Si template replicated using the concept of thermoplastic forming. Pt- and Zr-based bulk metallic glasses (BMGs) were evaluated through uniaxial tensile test, followed by scanning electron microscope (SEM) fractographic and shear band analysis. Compositional investigation of the fracture surface performed via energy dispersive X-ray spectroscopy (EDX), as well as Auger spectroscopy (AES) shows a moderate amount of interdiffusion (5 at.% maximum) of the constituent elements between the deformed and undeformed regions. Furthermore, length-scale effects on the mechanical behavior of porous BMGs were explored through molecular dynamics (MD) simulations, where shear band formation is observed for a material width of 18 nm.
  • Item
    Pronounced ductility in CuZrAl ternary bulk metallic glass composites with optimized microstructure through melt adjustment
    (New York : American Institute of Physics, 2012) Liu, Zengqian; Li, Ran; Liu, Gang; Song, Kaikai; Pauly, Simon; Zhang, Tao; Eckert, Jürgen
    Microstructures and mechanical properties of as-cast Cu47.5Zr47.5Al5 bulk metallic glass composites are optimized by appropriate remelting treatment of master alloys. With increasing remelting time, the alloys exhibit homogenized size and distribution of in situ formed B2 CuZr crystals. Pronounced tensile ductility of ∼13.6% and work-hardening ability are obtained for the composite with optimized microstructure. The effect of remelting treatment is attributed to the suppressed heterogeneous nucleation and growth of the crystalline phase from undercooled liquid, which may originate from the dissolution of oxides and nitrides as well as from the micro-scale homogenization of the melt.
  • Item
    Deformation-induced martensitic transformation in Cu-Zr-Zn bulk metallic glass composites
    (Basel : MDPI, 2015) Wu, Dianyu; Song, Kaikai; Cao, Chongde; Li, Ran; Wang, Gang; Wu, Yuan; Wan, Feng; Ding, Fuli; Shi, Yue; Bai, Xiaojun; Kaban, Ivan; Eckert, Jürgen
    The microstructures and mechanical properties of (Cu0.5Zr0.5)100−xZnx (x = 0, 1.5, 2.5, 4.5, 7, 10, and 14 at. %) bulk metallic glass (BMG) composites were studied. CuZr martensitic crystals together with minor B2 CuZr and amorphous phases dominate the microstructures of the as-quenched samples with low Zn additions (x = 0, 1.5, and 2.5 at. %), while B2 CuZr and amorphous phases being accompanied with minor martensitic crystals form at a higher Zn content (x = 4.5, 7, 10, and 14 at. %). The fabricated Cu-Zr-Zn BMG composites exhibit macroscopically appreciable compressive plastic strain and obvious work-hardening due to the formation of multiple shear bands and the deformation-induced martensitic transformation (MT) within B2 crystals. The present BMG composites could be a good candidate as high-performance structural materials.
  • Item
    Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation
    (London : Nature Publishing Group, 2016) He, Jie; Kaban, Ivan; Mattern, Norbert; Song, Kaikai; Sun, Baoan; Kim, Do Hyang; Eckert, Jürgen; Greer, A.Lindsay
    At room temperature, plastic flow of metallic glasses (MGs) is sharply localized in shear bands, which are a key feature of the plastic deformation in MGs. Despite their clear importance and decades of study, the conditions for formation of shear bands, their structural evolution and multiplication mechanism are still under debate. In this work, we investigate the local conditions at shear bands in new phase-separated bulk MGs containing glassy nanospheres and exhibiting exceptional plasticity under compression. It is found that the glassy nanospheres within the shear band dissolve through mechanical mixing driven by the sharp strain localization there, while those nearby in the matrix coarsen by Ostwald ripening due to the increased atomic mobility. The experimental evidence demonstrates that there exists an affected zone around the shear band. This zone may arise from low-strain plastic deformation in the matrix between the bands. These results suggest that measured property changes originate not only from the shear bands themselves, but also from the affected zones in the adjacent matrix. This work sheds light on direct visualization of deformation-related effects, in particular increased atomic mobility, in the region around shear bands.