Search Results

Now showing 1 - 2 of 2
  • Item
    Structure evolution of soft magnetic (Fe36Co36B19.2Si4.8Nb4)100-xCux (x = 0 and 0.5) bulk glassy alloys
    (Amsterdam [u.a.] : Elsevier Science, 2015) Stoica, Mihai; Ramasamy, Parthiban; Kaban, Ivan; Scudino, Sergio; Nicoara, Mircea; Vaughan, Gavin B.M.; Wright, Jonathan; Kumar, Ravi; Eckert, Jürgen
    Fully amorphous rods with diameters up to 2 mm diameter were obtained upon 0.5 at.% Cu addition to the Fe36Co36B19.2Si4.8Nb4 bulk metallic glass. The Cu-added glass shows a very good thermal stability but, in comparison with the Cu-free base alloy, the entire crystallization behavior is drastically changed. Upon heating, the glassy (Fe36Co36B19.2Si4.8Nb4)99.5Cu0.5 samples show two glass transitions-like events, separated by an interval of more than 100 K, in between which a bcc-(Fe,Co) solid solution is formed. The soft magnetic properties are preserved upon Cu-addition and the samples show a saturation magnetization of 1.1 T combined with less than 2 A/m coercivity. The relaxation behavior prior to crystallization, as well as the crystallization behavior, were studied by time-resolved X-ray diffraction using synchrotron radiation. It was found that both glassy alloys behave similar at temperatures below the glass transition. Irreversible structural transformations take place when approaching the glass transition and in the supercooled liquid region.
  • Item
    Effect of Alloying Elements in Melt Spun Mg-alloys for Hydrogen Storage
    (São Carlos : SciELO - Scientific Electronic Library Online, 2016) Rozenberg, Silvia; Saporiti, Fabiana; Lang, Julien; Audebert, Fernando; Botta, Pablo; Stoica, Mihai; Huot, Jacques; Eckert, Jürgen
    In this paper we report the effect of alloying elements on hydrogen storage properties of melt-spun Mg-based alloys. The base alloys Mg90Si10, Mg90Cu10, Mg65Cu35 (at%) were studied. We also investigated the effect of rare earths (using MM: mischmetal) and Al in Mg65Cu25Al10, Mg65Cu25MM10 and Mg65Cu10Al15MM10 alloys. All the melt-spun alloys without MM show a crystalline structure, and the Mg65Cu25MM10 and Mg65Cu10Al15MM10 alloys showed an amorphous and partially amorphous structure respectively. At 350˚C all the alloys had a crystalline structure during the hydrogen absorption-desorption tests. It was observed that Si and Cu in the binaries alloys hindered completely the activation of the hydrogen absorption. The partial substitution of Cu by MM or Al allowed activation. The combined substitution of Cu by MM and Al showed the best results with the fastest absorption and desorption kinetics, which suggests that this combination can be used for new Mg-alloys to improve hydrogen storage properties.