Search Results

Now showing 1 - 10 of 23
  • Item
    Tungsten as a chemically-stable electrode material on Ga-containing piezoelectric substrates langasite and catangasite for high-temperature saw devices
    (Basel : MDPI, 2016) Rane, Gayatri K.; Seifert, Marietta; Menzel, Siegfried; Gemming, Thomas; Eckert, Jürgen
    Thin films of tungsten on piezoelectric substrates La3Ga5SiO14 (LGS) and Ca3TaGa3Si2O14 (CTGS) have been investigated as a potential new electrode material for interdigital transducers for surface acoustic wave-based sensor devices operating at high temperatures up to 800 °C under vacuum conditions. Although LGS is considered to be suitable for high-temperature applications, it undergoes chemical and structural transformation upon vacuum annealing due to diffusion of gallium and oxygen. This can alter the device properties depending on the electrode nature, the annealing temperature, and the duration of the application. Our studies present evidence for the chemical stability of W on these substrates against the diffusion of Ga/O from the substrate into the film, even upon annealing up to 800 °C under vacuum conditions using Auger electron spectroscopy and energy-dispersive X-ray spectroscopy, along with local studies using transmission electron microscopy. Additionally, the use of CTGS as a more stable substrate for such applications is indicated.
  • Item
    Phase separation in rapid solidified Ag-rich Ag-Cu-Zr alloys
    (São Carlos : Universidade Federal de São Carlos, 2015) Niyomsoan, Saisamorn; Gargarella, Piter; Chomsaeng, Natthaphol; Termsuksawad, Preecha; Kühn, Utha; Eckert, Jürgen
    The microstructure and phase formation of rapid solidified Ag-rich Ag-Cu-Zr alloys were investigated. Two types of structure; interconnected- and droplet-type structures, were obtained due to phase separation mechanisms. The former was spinodal decomposition and the later was nucleation and growth mechanism. Depending on the alloy compositions, three crystalline phases; FCC-Ag, AgZr and Cu10Zr7 phases were observed along with an in-situ nanocrystalline/amorphous composite. Vickers hardness testing indicated a significant increase of hardness in the nanocrystalline/amorphous-composite alloy.
  • Item
    Phase formation, thermal stability and mechanical properties of a Cu-Al-Ni-Mn shape memory alloy prepared by selective laser melting
    (São Carlos : Universidade Federal de São Carlos, 2015) Gargarella, Piter; Kiminami, Cláudio Shyinti; Mazzer, Eric Marchezini; Cava, Régis Daniel; Basilio, Leonardo Albuquerque; Bolfarini, Claudemiro; Botta, Walter José; Eckert, Jürgen; Gustmann, Tobias; Pauly, Simon
    Selective laser melting (SLM) is an additive manufacturing process used to produce parts with complex geometries layer by layer. This rapid solidification method allows fabricating samples in a non-equilibrium state and with refined microstructure. In this work, this method is used to fabricate 3 mm diameter rods of a Cu-based shape memory alloy. The phase formation, thermal stability and mechanical properties were investigated and correlated. Samples with a relative density higher than 92% and without cracks were obtained. A single monoclinic martensitic phase was formed with average grain size ranging between 28 to 36 μm. The samples exhibit a reverse martensitic transformation temperature around 106 ± 2 °C and a large plasticity in compression (around 15±1%) with a typical “double-yielding” behaviour.
  • Item
    Ti/Al multi-layered sheets: Differential speed rolling (Part B)
    (Basel : MDPI, 2016) Romberg, Jan; Freudenberger, Jens; Watanabe, Hiroyuki; Scharnweber, Juliane; Eschke, Andy; Kühn, Uta; Klauß, Hansjörg; Oertel, Carl-Georg; Skrotzki, Werner; Eckert, Jürgen; Schultz, Ludwig
    Differential speed rolling has been applied to multi-layered Ti/Al composite sheets, obtained from accumulative roll bonding with intermediate heat treatments being applied. In comparison to conventional rolling, differential speed rolling is more efficient in strengthening the composite due to the more pronounced grain refinement. Severe plastic deformation by means of rolling becomes feasible if the evolution of common rolling textures in the Ti layers is retarded. In this condition, a maximum strength level of the composites is achieved, i.e., an ultimate tensile strength of 464 MPa, while the strain to failure amounts to 6.8%. The deformation has been observed for multi-layered composites. In combination with the analysis of the microstructure, this has been correlated to the mechanical properties.
  • Item
    Role of 1,3-dioxolane and LiNO3 addition on the long term stability of nanostructured silicon/carbon anodes for rechargeable lithium batteries
    (Pennington, NJ : ECS, 2016) Jaumann, Tony; Balach, Juan; Klose, Markus; Oswald, Steffen; Eckert, Jürgen; Giebeler, Lars
    In order to utilize silicon as alternative anode for unfavorable lithium metal in lithium – sulfur (Li–S) batteries, a profound understanding of the interfacial characteristics in ether-based electrolytes is required. Herein, the solid electrolyte interface (SEI) of a nanostructured silicon/carbon anode after long-term cycling in an ether-based electrolyte for Li–S batteries is investigated. The role of LiNO3 and 1,3-dioxolane (DOL) in dimethoxy ethane (DME) solutions as typically used electrolyte components on the electrochemical performance and interfacial characteristics on silicon are evaluated. Because of the high surface area of our nanostructured electrode owing to the silicon particle size of around 5 nm and the porous carbon scaffold, the interfacial characteristics dominate the overall electrochemical reversibility opening a detailed analysis. We show that the use of DME/DOL solutions under ambient temperature causes higher degradation of electrolyte components compared to carbonate-based electrolytes used for Li–ion batteries (LIB). This behavior of DME/DOL mixtures is associated with different SEI component formation and it is demonstrated that LiNO3 addition can significantly stabilize the cycle performance of nanostructured silicon/carbon anodes. A careful post-mortem analysis and a discussion in context to carbonate-based electrolyte solutions helps to understand the degradation mechanism of silicon-based anodes in rechargeable lithium-based batteries.
  • Item
    SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: The role of electrode preparation, FEC addition and binders
    (Cambridge : Royal Society of Chemistry, 2015) Jaumann, Tony; Balach, Juan; Klose, Markus; Oswald, Steffen; Langklotz, Ulrike; Michaelis, Alexander; Eckert, Jürgen; Giebeler, Lars
    Silicon is a promising negative electrode for secondary lithium-based batteries, but the electrochemical reversibility of particularly nanostructured silicon electrodes drastically depends on their interfacial characteristics, commonly known as the solid electrolyte interface (SEI). The beneficial origin of certain electrolyte additives or different binders is still discussed controversially owing to the challenging peculiarities of interfacial post-mortem investigations of electrodes. In this work, we address the common difficulties of SEI investigations of porous silicon/carbon nanostructures and study the addition of a fluoroethylene carbonate (FEC) as a stabilizing additive as well as the use of two different binders, carboxymethyl cellulose/styrene-butadiene rubber (CMC/SBR) and polyacrylic acid (PAA), for the SEI formation. The electrode is composed of silicon nanocrystallites below 5 nm diameter allowing a detailed investigation of interfacial characteristics of silicon owing to the high surface area. We first performed galvanostatic long-term cycling (400 times) and carried out comprehensive ex situ characterization of the cycled nanocrystalline silicon electrodes with XRD, EDXS, TEM and XPS. We modified the preparation of the electrode for post-mortem characterization to distinguish between electrolyte components and the actual SEI. The impact of the FEC additive and two different binders on the interfacial layer is studied and the occurrence of diverse compounds, in particular LiF, Li2O and phosphates, is discussed. These results help to understand general issues in SEI formation and to pave the way for the development of advanced electrolytes allowing for a long-term performance of nanostructured Si-based electrodes.
  • Item
    Processing of Al–12Si–TNM composites by selective laser melting and evaluation of compressive and wear properties
    (Cambridge : Cambridge University Press, 2015) Prashantha, Konda G.; Scudino, Sergio; Chaubey, Anil K.; Löber, Lukas; Wang, Pei; Attar, Hooyar; Schimansky, Frank P.; Pyczak, Florian; Eckert, Jürgen
    Al-12Si (80 vol%)-Ti52.4Al42.2Nb4.4Mo0.9B0.06 (at.%) (TNM) composites were successfully produced by the selective laser melting (SLM). Detailed structural and microstructural analysis shows the formation of the Al6MoTi intermetallic phase due to the reaction of the TNM reinforcement with the Al-12Si matrix during SLM. Compression tests reveal that the composites exhibit significantly improved properties (∼140 and ∼160 MPa higher yield and ultimate compressive strengths, respectively) compared with the Al-12Si matrix. However, the samples break at ∼6% total strain under compression, thus showing a reduced plasticity of the composites. Sliding wear tests were carried out for both the Al-12Si matrix and the Al-12Si-TNM composites. The composites perform better under sliding wear conditions and the wear rate increases with increasing loads. At high loads, the wear takes place at three different rates and the wear rate decreases with increasing experiment duration.
  • Item
    Deformation-induced martensitic transformation in Cu-Zr-Zn bulk metallic glass composites
    (Basel : MDPI, 2015) Wu, Dianyu; Song, Kaikai; Cao, Chongde; Li, Ran; Wang, Gang; Wu, Yuan; Wan, Feng; Ding, Fuli; Shi, Yue; Bai, Xiaojun; Kaban, Ivan; Eckert, Jürgen
    The microstructures and mechanical properties of (Cu0.5Zr0.5)100−xZnx (x = 0, 1.5, 2.5, 4.5, 7, 10, and 14 at. %) bulk metallic glass (BMG) composites were studied. CuZr martensitic crystals together with minor B2 CuZr and amorphous phases dominate the microstructures of the as-quenched samples with low Zn additions (x = 0, 1.5, and 2.5 at. %), while B2 CuZr and amorphous phases being accompanied with minor martensitic crystals form at a higher Zn content (x = 4.5, 7, 10, and 14 at. %). The fabricated Cu-Zr-Zn BMG composites exhibit macroscopically appreciable compressive plastic strain and obvious work-hardening due to the formation of multiple shear bands and the deformation-induced martensitic transformation (MT) within B2 crystals. The present BMG composites could be a good candidate as high-performance structural materials.
  • Item
    Selective laser melting of Ti-45Nb alloy
    (Basel : MDPI, 2015) Schwab, Holger; Prashanth, Konda Gokuldoss; Löber, Lukas; Kühn, Uta; Eckert, Jürgen
    Ti-45Nb is one of the potential alloys that can be applied for biomedical applications as implants due to its low Young’s modulus. Ti-45Nb (wt.%) gas atomized powders were used to produce bulk samples by selective laser melting with three different parameter sets (energy inputs). A β-phase microstructure consisting of elliptical grains with an enriched edge of titanium was observed by scanning electron microscopy and X-ray diffraction studies. The mechanical properties of these samples were evaluated using hardness and compression tests, which suggested that the strength of the samples increases with increasing energy input within the range considered.
  • Item
    Toward edges-rich MoS2 layers via chemical liquid exfoliation triggering distinctive magnetism
    (Milton Park : Taylor & Francis, 2016) Gao, Guanhui; Chen, Chi; Xie, Xiaobin; Su, Yantao; Kang, Shendong; Zhu, Guichi; Gao, Duyang; Eckert, Jürgen; Trampert, Achim; Cai, Lintao
    The magnetic function of layered molybdenum disulfide (MoS2) has been investigated via simulation, but few reliable experimental results have been explored. Herein, we developed edges-rich structural MoS2 nanosheets via liquid phase exfoliation approach, triggering exceptional ferromagnetism. The magnetic measurements revealed the clear ferromagnetic property of layered MoS2, compared to the pristine MoS2 in bulk exhibiting diamagnetism. The existence of ferromagnetism mostly was attributed to the presence of grain boundaries with abundant irregular edges confirmed by the transmission electron microscopy, magnetic force microscopy and X-ray photoelectron spectroscopy, which experimentally provided reliable evidences on irregular edges-rich states engineering ferromagnetism to clarify theoretical calculation.