Search Results

Now showing 1 - 10 of 29
  • Item
    Roles of hydrogenation, annealing and field in the structure and magnetic entropy change of Tb-based bulk metallic glasses
    (New York : American Institute of Physics, 2013) Luo, Qiang; Schwarz, Björn; Mattern, Norbert; Shen, Jun; Eckert, Jürgen
    The reduction of open-volume regions in Tb-based metallic glass (MG) by annealing and hydrogen charging was found to rearrange the atomic structure and tune the magnetic behaviors. After crystallization, the magnetic structure and magnetic entropy change (MEC) alters due to the structural transformation, and a plateau-like-MEC behavior can be obtained. The hydrogen concentration after charging at 1mA/cm2 for 576 h reaches as high as 3290 w-ppm. The magnetization behavior and the MEC change due to the modification of the exchange interaction and the random magnetic anisotropy (RMA) upon hydrogenation. At low temperatures, irreversible positive MEC was obtained, which is related to the internal entropy production. The RMA-to-exchange ratio acts as a switch to control the irreversible entropy production channel and the reversible entropy transfer channel. The field dependence of the MEC is discussed in term of the competition among Zeeman energy, exchange interaction and RMA.
  • Item
    Pronounced ductility in CuZrAl ternary bulk metallic glass composites with optimized microstructure through melt adjustment
    (New York : American Institute of Physics, 2012) Liu, Zengqian; Li, Ran; Liu, Gang; Song, Kaikai; Pauly, Simon; Zhang, Tao; Eckert, Jürgen
    Microstructures and mechanical properties of as-cast Cu47.5Zr47.5Al5 bulk metallic glass composites are optimized by appropriate remelting treatment of master alloys. With increasing remelting time, the alloys exhibit homogenized size and distribution of in situ formed B2 CuZr crystals. Pronounced tensile ductility of ∼13.6% and work-hardening ability are obtained for the composite with optimized microstructure. The effect of remelting treatment is attributed to the suppressed heterogeneous nucleation and growth of the crystalline phase from undercooled liquid, which may originate from the dissolution of oxides and nitrides as well as from the micro-scale homogenization of the melt.
  • Item
    Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films
    (New York : American Institute of Physics, 2013) Behler, Anna; Teichert, Niclas; Dutta, Biswanath; Waske, Anja; Hickel, Tilmann; Auge, Alexander; Hütten, Andreas; Eckert, Jürgen
    A thickness dependent exchange bias in the low temperature martensitic state of epitaxial Ni-Mn-Sn thin films is found. The effect can be retained down to very small thicknesses. For a Ni50Mn32Sn18 thin film, which does not undergo a martensitic transformation, no exchange bias is observed. Our results suggest that a significant interplay between ferromagnetic and antiferromagnetic regions, which is the origin for exchange bias, is only present in the martensite. The finding is supported by ab initio calculations showing that the antiferromagnetic order is stabilized in the phase.
  • Item
    Tungsten as a chemically-stable electrode material on Ga-containing piezoelectric substrates langasite and catangasite for high-temperature saw devices
    (Basel : MDPI, 2016) Rane, Gayatri K.; Seifert, Marietta; Menzel, Siegfried; Gemming, Thomas; Eckert, Jürgen
    Thin films of tungsten on piezoelectric substrates La3Ga5SiO14 (LGS) and Ca3TaGa3Si2O14 (CTGS) have been investigated as a potential new electrode material for interdigital transducers for surface acoustic wave-based sensor devices operating at high temperatures up to 800 °C under vacuum conditions. Although LGS is considered to be suitable for high-temperature applications, it undergoes chemical and structural transformation upon vacuum annealing due to diffusion of gallium and oxygen. This can alter the device properties depending on the electrode nature, the annealing temperature, and the duration of the application. Our studies present evidence for the chemical stability of W on these substrates against the diffusion of Ga/O from the substrate into the film, even upon annealing up to 800 °C under vacuum conditions using Auger electron spectroscopy and energy-dispersive X-ray spectroscopy, along with local studies using transmission electron microscopy. Additionally, the use of CTGS as a more stable substrate for such applications is indicated.
  • Item
    Production of porous β-Type Ti–40Nb alloy for biomedical applications: Comparison of selective laser melting and hot pressing
    (Basel : MDPI, 2013) Zhuravleva, Ksenia; Bönisch, Matthias; Prashanth, Konda Gokuldoss; Hempel, Ute; Helth, Arne; Gemming, Thomas; Calin, Mariana; Scudino, Sergio; Schultz, Ludwig; Eckert, Jürgen; Gebert, Annett
    We used selective laser melting (SLM) and hot pressing of mechanically-alloyed β-type Ti–40Nb powder to fabricate macroporous bulk specimens (solid cylinders). The total porosity, compressive strength, and compressive elastic modulus of the SLM-fabricated material were determined as 17% ± 1%, 968 ± 8 MPa, and 33 ± 2 GPa, respectively. The alloy’s elastic modulus is comparable to that of healthy cancellous bone. The comparable results for the hot-pressed material were 3% ± 2%, 1400 ± 19 MPa, and 77 ± 3 GPa. This difference in mechanical properties results from different porosity and phase composition of the two alloys. Both SLM-fabricated and hot-pressed cylinders demonstrated good in vitro biocompatibility. The presented results suggest that the SLM-fabricated alloy may be preferable to the hot-pressed alloy for biomedical applications, such as the manufacture of load-bearing metallic components for total joint replacements.
  • Item
    Phase separation in rapid solidified Ag-rich Ag-Cu-Zr alloys
    (São Carlos : Universidade Federal de São Carlos, 2015) Niyomsoan, Saisamorn; Gargarella, Piter; Chomsaeng, Natthaphol; Termsuksawad, Preecha; Kühn, Utha; Eckert, Jürgen
    The microstructure and phase formation of rapid solidified Ag-rich Ag-Cu-Zr alloys were investigated. Two types of structure; interconnected- and droplet-type structures, were obtained due to phase separation mechanisms. The former was spinodal decomposition and the later was nucleation and growth mechanism. Depending on the alloy compositions, three crystalline phases; FCC-Ag, AgZr and Cu10Zr7 phases were observed along with an in-situ nanocrystalline/amorphous composite. Vickers hardness testing indicated a significant increase of hardness in the nanocrystalline/amorphous-composite alloy.
  • Item
    Phase formation, thermal stability and mechanical properties of a Cu-Al-Ni-Mn shape memory alloy prepared by selective laser melting
    (São Carlos : Universidade Federal de São Carlos, 2015) Gargarella, Piter; Kiminami, Cláudio Shyinti; Mazzer, Eric Marchezini; Cava, Régis Daniel; Basilio, Leonardo Albuquerque; Bolfarini, Claudemiro; Botta, Walter José; Eckert, Jürgen; Gustmann, Tobias; Pauly, Simon
    Selective laser melting (SLM) is an additive manufacturing process used to produce parts with complex geometries layer by layer. This rapid solidification method allows fabricating samples in a non-equilibrium state and with refined microstructure. In this work, this method is used to fabricate 3 mm diameter rods of a Cu-based shape memory alloy. The phase formation, thermal stability and mechanical properties were investigated and correlated. Samples with a relative density higher than 92% and without cracks were obtained. A single monoclinic martensitic phase was formed with average grain size ranging between 28 to 36 μm. The samples exhibit a reverse martensitic transformation temperature around 106 ± 2 °C and a large plasticity in compression (around 15±1%) with a typical “double-yielding” behaviour.
  • Item
    Ti/Al multi-layered sheets: Differential speed rolling (Part B)
    (Basel : MDPI, 2016) Romberg, Jan; Freudenberger, Jens; Watanabe, Hiroyuki; Scharnweber, Juliane; Eschke, Andy; Kühn, Uta; Klauß, Hansjörg; Oertel, Carl-Georg; Skrotzki, Werner; Eckert, Jürgen; Schultz, Ludwig
    Differential speed rolling has been applied to multi-layered Ti/Al composite sheets, obtained from accumulative roll bonding with intermediate heat treatments being applied. In comparison to conventional rolling, differential speed rolling is more efficient in strengthening the composite due to the more pronounced grain refinement. Severe plastic deformation by means of rolling becomes feasible if the evolution of common rolling textures in the Ti layers is retarded. In this condition, a maximum strength level of the composites is achieved, i.e., an ultimate tensile strength of 464 MPa, while the strain to failure amounts to 6.8%. The deformation has been observed for multi-layered composites. In combination with the analysis of the microstructure, this has been correlated to the mechanical properties.
  • Item
    Role of 1,3-dioxolane and LiNO3 addition on the long term stability of nanostructured silicon/carbon anodes for rechargeable lithium batteries
    (Pennington, NJ : ECS, 2016) Jaumann, Tony; Balach, Juan; Klose, Markus; Oswald, Steffen; Eckert, Jürgen; Giebeler, Lars
    In order to utilize silicon as alternative anode for unfavorable lithium metal in lithium – sulfur (Li–S) batteries, a profound understanding of the interfacial characteristics in ether-based electrolytes is required. Herein, the solid electrolyte interface (SEI) of a nanostructured silicon/carbon anode after long-term cycling in an ether-based electrolyte for Li–S batteries is investigated. The role of LiNO3 and 1,3-dioxolane (DOL) in dimethoxy ethane (DME) solutions as typically used electrolyte components on the electrochemical performance and interfacial characteristics on silicon are evaluated. Because of the high surface area of our nanostructured electrode owing to the silicon particle size of around 5 nm and the porous carbon scaffold, the interfacial characteristics dominate the overall electrochemical reversibility opening a detailed analysis. We show that the use of DME/DOL solutions under ambient temperature causes higher degradation of electrolyte components compared to carbonate-based electrolytes used for Li–ion batteries (LIB). This behavior of DME/DOL mixtures is associated with different SEI component formation and it is demonstrated that LiNO3 addition can significantly stabilize the cycle performance of nanostructured silicon/carbon anodes. A careful post-mortem analysis and a discussion in context to carbonate-based electrolyte solutions helps to understand the degradation mechanism of silicon-based anodes in rechargeable lithium-based batteries.
  • Item
    SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: The role of electrode preparation, FEC addition and binders
    (Cambridge : Royal Society of Chemistry, 2015) Jaumann, Tony; Balach, Juan; Klose, Markus; Oswald, Steffen; Langklotz, Ulrike; Michaelis, Alexander; Eckert, Jürgen; Giebeler, Lars
    Silicon is a promising negative electrode for secondary lithium-based batteries, but the electrochemical reversibility of particularly nanostructured silicon electrodes drastically depends on their interfacial characteristics, commonly known as the solid electrolyte interface (SEI). The beneficial origin of certain electrolyte additives or different binders is still discussed controversially owing to the challenging peculiarities of interfacial post-mortem investigations of electrodes. In this work, we address the common difficulties of SEI investigations of porous silicon/carbon nanostructures and study the addition of a fluoroethylene carbonate (FEC) as a stabilizing additive as well as the use of two different binders, carboxymethyl cellulose/styrene-butadiene rubber (CMC/SBR) and polyacrylic acid (PAA), for the SEI formation. The electrode is composed of silicon nanocrystallites below 5 nm diameter allowing a detailed investigation of interfacial characteristics of silicon owing to the high surface area. We first performed galvanostatic long-term cycling (400 times) and carried out comprehensive ex situ characterization of the cycled nanocrystalline silicon electrodes with XRD, EDXS, TEM and XPS. We modified the preparation of the electrode for post-mortem characterization to distinguish between electrolyte components and the actual SEI. The impact of the FEC additive and two different binders on the interfacial layer is studied and the occurrence of diverse compounds, in particular LiF, Li2O and phosphates, is discussed. These results help to understand general issues in SEI formation and to pave the way for the development of advanced electrolytes allowing for a long-term performance of nanostructured Si-based electrodes.