Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Wear Behavior of a Heat-Treatable Al-3.5Cu-1.5Mg-1Si Alloy Manufactured by Selective Laser Melting

2021, Wang, Pei, Lei, Yang, Qi, Jun-Fang, Yu, Si-Jie, Setchi, Rossitza, Wu, Ming-Wei, Eckert, Jürgen, Li, Hai-Chao, Scudino, Sergio

In this study, the wear behavior of a heat-treatable Al-7Si-0.5Mg-0.5Cu alloy fabricated by selective laser melting was investigated systematically. Compared with the commercial homogenized AA2024 alloy, the fine secondary phase of the SLM Al-Cu-Mg-Si alloy leads to a low specific wear rate (1.8 ± 0.11 × 10-4 mm3(Nm)-1) and a low average coefficient of friction (0.40 ± 0.01). After the T6 heat treatment, the SLM Al-Cu-Mg-Si alloy exhibits a lower specific wear rate (1.48 ± 0.02 × 10-4 mm3(Nm)-1), but a similar average coefficient of friction (0.34 ± 0.01) as the heat-treated AA2024 alloy. Altogether, the SLM Al-3.5Cu-1.5Mg-1Si alloy is suitable for the achievement of not only superior mechanical performance, but also improved tribological properties.

Loading...
Thumbnail Image
Item

Direct observation of nanocrystal-induced enhancement of tensile ductility in a metallic glass composite

2021, Gammer, Christoph, Rentenberger, Christian, Beitelschmidt, Denise, Minor, Andrew M., Eckert, Jürgen

Bulk metallic glasses (BMGs) have attracted wide interest, but their successful application is hindered by their low ductility at room temperature. Therefore, the use of composites of a BMG matrix with crystalline secondary phases has been proposed to overcome this drawback. In the present work we demonstrate the fabrication of a tailored BMG nanocomposite containing a high density of monodisperse nanocrystals with a size of around 20 nm using a combination of mechanical and thermal treatment of Cu36Zr48Al8Ag8 well below the crystallization temperature. Direct observations of the interaction of the nanocrystals with a shear band during in situ deformation in a transmission electron microscope demonstrate that the achieved nanocomposite has the potential to inhibit catastrophic fracture in tension. This demonstrates that a sufficient number of nanoscale structural heterogeneities can be a route towards BMG composites with superior mechanical properties.