Search Results

Now showing 1 - 2 of 2
  • Item
    Phase formation, thermal stability and mechanical properties of a Cu-Al-Ni-Mn shape memory alloy prepared by selective laser melting
    (São Carlos : Universidade Federal de São Carlos, 2015) Gargarella, Piter; Kiminami, Cláudio Shyinti; Mazzer, Eric Marchezini; Cava, Régis Daniel; Basilio, Leonardo Albuquerque; Bolfarini, Claudemiro; Botta, Walter José; Eckert, Jürgen; Gustmann, Tobias; Pauly, Simon
    Selective laser melting (SLM) is an additive manufacturing process used to produce parts with complex geometries layer by layer. This rapid solidification method allows fabricating samples in a non-equilibrium state and with refined microstructure. In this work, this method is used to fabricate 3 mm diameter rods of a Cu-based shape memory alloy. The phase formation, thermal stability and mechanical properties were investigated and correlated. Samples with a relative density higher than 92% and without cracks were obtained. A single monoclinic martensitic phase was formed with average grain size ranging between 28 to 36 μm. The samples exhibit a reverse martensitic transformation temperature around 106 ± 2 °C and a large plasticity in compression (around 15±1%) with a typical “double-yielding” behaviour.
  • Item
    Phase separation in rapid solidified Ag-rich Ag-Cu-Zr alloys
    (São Carlos : Universidade Federal de São Carlos, 2015) Niyomsoan, Saisamorn; Gargarella, Piter; Chomsaeng, Natthaphol; Termsuksawad, Preecha; Kühn, Utha; Eckert, Jürgen
    The microstructure and phase formation of rapid solidified Ag-rich Ag-Cu-Zr alloys were investigated. Two types of structure; interconnected- and droplet-type structures, were obtained due to phase separation mechanisms. The former was spinodal decomposition and the later was nucleation and growth mechanism. Depending on the alloy compositions, three crystalline phases; FCC-Ag, AgZr and Cu10Zr7 phases were observed along with an in-situ nanocrystalline/amorphous composite. Vickers hardness testing indicated a significant increase of hardness in the nanocrystalline/amorphous-composite alloy.