Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Giant thermal expansion and α-precipitation pathways in Ti-Alloys

2017, Bönisch, M., Panigrahi, A., Stoica, M., Calin, M., Ahrens, E., Zehetbauer, M., Skrotzki, W., Eckert, J.

Ti-Alloys represent the principal structural materials in both aerospace development and metallic biomaterials. Key to optimizing their mechanical and functional behaviour is in-depth know-how of their phases and the complex interplay of diffusive vs. displacive phase transformations to permit the tailoring of intricate microstructures across a wide spectrum of configurations. Here, we report on structural changes and phase transformations of Ti-Nb alloys during heating by in situ synchrotron diffraction. These materials exhibit anisotropic thermal expansion yielding some of the largest linear expansion coefficients (+ 163.9×10-6 to-95.1×10-6 °C-1) ever reported. Moreover, we describe two pathways leading to the precipitation of the α-phase mediated by diffusion-based orthorhombic structures, α″lean and α″iso. Via coupling the lattice parameters to composition both phases evolve into α through rejection of Nb. These findings have the potential to promote new microstructural design approaches for Ti-Nb alloys and β-stabilized Ti-Alloys in general.

Loading...
Thumbnail Image
Item

Deformation behavior of metallic glass composites reinforced with shape memory nanowires studied via molecular dynamics simulations

2015, Şopu, D., Stoica, M., Eckert, J.

Molecular dynamics simulations indicate that the deformation behavior and mechanism of Cu64Zr36 composite structures reinforced with B2 CuZr nanowires are strongly influenced by the martensitic phase transformation and distribution of these crystalline precipitates. When nanowires are distributed in the glassy matrix along the deformation direction, a two-steps stress-induced martensitic phase transformation is observed. Since the martensitic transformation is driven by the elastic energy release, the strain localization behavior in the glassy matrix is strongly affected. Therefore, the composite materials reinforced with a crystalline phase, which shows stress-induced martensitic transformation, represent a route for controlling the properties of glassy materials. The authors acknowledge the financial support of the European Research Council under the ERC Advanced Grant INTELHYB (Grant No. ERC-2013-ADG-340025) and the German Science Foundation (DFG) under the Leibniz Program (Grant No. EC 111/26-1). A DAAD-PPP travel grant is also acknowledged. Computing time was made available at ZIH TU Dresden and IFW Dresden as well as by CSC Julich. The authors acknowledge Dr. Simon Pauly and Sergio Scudino for fruitful discussions.

Loading...
Thumbnail Image
Item

Is the energy density a reliable parameter for materials synthesis by selective laser melting?

2017-3-9, Prashanth, K.G., Scudino, S., Maity, T., Das, J., Eckert, J.

The effective fabrication of materials using selective laser melting depends on the process parameters. Here, we analyse the suitability of the energy density to represent the energy transferred to the powder bed, which is effectively used to melt the particles and to produce the bulk specimens. By properly varying laser power and speed in order to process the powder at constant energy density, we show that the equation currently used to calculate the energy density gives only an approximate estimation and that hatch parameters and material properties should be considered to correctly evaluate the energy density.

Loading...
Thumbnail Image
Item

High strength nanostructured Al-based alloys through optimized processing of rapidly quenched amorphous precursors

2018, Kim, S.-Y., Lee, G.-Y., Park, G.-H., Kim, H.-A., Lee, A.-Y., Scudino, S., Prashanth, K.G., Kim, D.-H., Eckert, J., Lee, M.-H.

We report the methods increasing both strength and ductility of aluminum alloys transformed from amorphous precursor. The mechanical properties of bulk samples produced by spark-plasma sintering (SPS) of amorphous Al-Ni-Co-Dy powders at temperatures above 673 K are significantly enhanced by in-situ crystallization of nano-scale intermetallic compounds during the SPS process. The spark plasma sintered Al84Ni7Co3Dy6 bulk specimens exhibit 1433 MPa compressive yield strength and 1773 MPa maximum strength together with 5.6% plastic strain, respectively. The addition of Dy enhances the thermal stability of primary fcc Al in the amorphous Al-TM -RE alloy. The precipitation of intermetallic phases by crystallization of the remaining amorphous matrix plays important role to restrict the growth of the fcc Al phase and contributes to the improvement of the mechanical properties. Such fully crystalline nano- or ultrafine-scale Al-Ni-Co-Dy systems are considered promising for industrial application because their superior mechanical properties in terms of a combination of very high room temperature strength combined with good ductility.

Loading...
Thumbnail Image
Item

Amorphous martensite in β-Ti alloys

2018, Zhang, L., Zhang, H., Ren, X., Eckert, J., Wang, Y., Zhu, Z., Gemming, T., Pauly, S.

Martensitic transformations originate from a rigidity instability, which causes a crystal to change its lattice in a displacive manner. Here, we report that the martensitic transformation on cooling in Ti-Zr-Cu-Fe alloys yields an amorphous phase instead. Metastable β-Ti partially transforms into an intragranular amorphous phase due to local lattice shear and distortion. The lenticular amorphous plates, which very much resemble α′/α″ martensite in conventional Ti alloys, have a well-defined orientation relationship with the surrounding β-Ti crystal. The present solid-state amorphization process is reversible, largely cooling rate independent and constitutes a rare case of congruent inverse melting. The observed combination of elastic softening and local lattice shear, thus, is the unifying mechanism underlying both martensitic transformations and catastrophic (inverse) melting. Not only do we reveal an alternative mechanism for solid-state amorphization but also establish an explicit experimental link between martensitic transformations and catastrophic melting.

Loading...
Thumbnail Image
Item

Optimizing mechanical properties of Fe26.7Co26.7Ni26.7Si8.9B11 high entropy alloy by inducing hypoeutectic to quasi-duplex microstructural transition

2019, Zhang, Z.-Q., Song, K.-K., Guo, S., Xue, Q.-S., Xing, H., Cao, C.-D., Dai, F.-P., Völker, B., Hohenwarter, A., Maity, T., Chawake, N., Kim, J.-T., Wang, L., Kaban, I., Eckert, J.

High-entropy alloys (HEAs) have inspired considerable interest due to their attractive physical and mechanical properties. In this work, the microstructural evolution induced by different heat treatments on rapidly solidified hypoeutectic precursors of a Fe26.7Co26.7Ni26.7Si8.9B11 HEA is investigated and correlated with the corresponding mechanical properties. The microstructures of the rapidly solidified precursors are composed of primary fcc solid solution dendrites embedded in a eutectic matrix. When the samples are annealed at different temperatures after furnace cooling or quenching, respectively, the eutectic structure gradually decomposes into fcc, tetragonal (Fe,Co)2B, and hexagonal Ni31Si12 crystals with increasing annealing temperature, leading to a gradual increase of the content of the fcc crystals and both their aggregation and coarsening. Then the dominant structural framework gradually transforms from eutectic structures to fcc dendrites and ultimately the (Fe,Co)2B crystals become isolated as dominant reinforcement particles distributed in the interdendritic regions. This gradual microstructural transition from hypoeutectic to quasi-duplex structures leads to the change of the dominant deformation mechanism from crack-controlled to dislocation-dominated deformation, which allows to control both ductility and strength in a wide range. Hence, this study provides some guideline for how to tune the microstructure and mechanical properties of HEAs.