Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Covalency-Driven Preservation of Local Charge Densities in a Metal-to-Ligand Charge-Transfer Excited Iron Photosensitizer

2019, Jay, Raphael M., Eckert, Sebastian, Vaz da Cruz, Vinicius, Fondell, Mattis, Mitzner, Rolf, Föhlisch, Alexander

Covalency is found to even out charge separation after photo-oxidation of the metal center in the metal-to-ligand charge-transfer state of an iron photosensitizer. The σ-donation ability of the ligands compensates for the loss of iron 3d electronic charge, thereby upholding the initial metal charge density and preserving the local noble-gas configuration. These findings are enabled through element-specific and orbital-selective time-resolved X-ray absorption spectroscopy at the iron L-edge. Thus, valence orbital populations around the central metal are directly accessible. In conjunction with density functional theory we conclude that the picture of a localized charge-separation is inadequate. However, the unpaired spin density provides a suitable representation of the electron–hole pair associated with the electron-transfer process. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

Highly efficient soft x-ray spectrometer for transient absorption spectroscopy with broadband table-top high harmonic sources

2021, Kleine, Carlo, Ekimova, Maria, Winghart, Marc-Oliver, Eckert, Sebastian, Reichel, Oliver, Löchel, Heike, Probst, Jürgen, Braig, Christoph, Seifert, Christian, Erko, Alexei, Sokolov, Andrey, Vrakking, Marc J. J., Nibbering, Erik T. J., Rouzée, Arnaud

We present a novel soft x-ray spectrometer for ultrafast absorption spectroscopy utilizing table-top femtosecond high-order harmonic sources. Where most commercially available spectrometers rely on spherical variable line space gratings with a typical efficiency on the order of 3% in the first diffractive order, this spectrometer, based on a Hettrick-Underwood design, includes a reflective zone plate as a dispersive element. An improved efficiency of 12% at the N K-edge is achieved, accompanied by a resolving power of 890. The high performance of the soft x-ray spectrometer is further demonstrated by comparing nitrogen K-edge absorption spectra from calcium nitrate in aqueous solution obtained with our high-order harmonic source to previous measurements performed at the electron storage ring facility BESSY II.