Search Results

Now showing 1 - 9 of 9
  • Item
    Is atmospheric carbon dioxide removal a game changer for climate change mitigation?
    (Heidelberg : Springer, 2013) Kriegler, Elmar; Edenhofer, Ottmar; Reuster, Lena; Luderer, Gunnar; Klein, David
    The ability to directly remove carbon dioxide from the atmosphere allows the decoupling of emissions and emissions control in space and time. We ask the question whether this unique feature of carbon dioxide removal technologies fundamentally alters the dynamics of climate mitigation pathways. The analysis is performed in the coupled energy-economy-climate model ReMIND using the bioenergy with CCS route as an application of CDR technology. BECCS is arguably the least cost CDR option if biomass availability is not a strongly limiting factor. We compare mitigation pathways with and without BECCS to explore the impact of CDR technologies on the mitigation portfolio. Effects are most pronounced for stringent climate policies where BECCS is a key technology for the effectiveness of carbon pricing policies. The decoupling of emissions and emissions control allows prolonging the use of fossil fuels in sectors that are difficult to decarbonize, particularly in the transport sector. It also balances the distribution of mitigation costs across future generations. CDR is not a silver bullet technology. The largest part of emissions reductions continues to be provided by direct mitigation measures at the emissions source. The value of CDR lies in its flexibility to alleviate the most costly constraints on mitigating emissions.
  • Item
    Alternative carbon price trajectories can avoid excessive carbon removal
    ([London] : Nature Publishing Group UK, 2021) Strefler, Jessica; Kriegler, Elmar; Bauer, Nico; Luderer, Gunnar; Pietzcker, Robert C.; Giannousakis, Anastasis; Edenhofer, Ottmar
    The large majority of climate change mitigation scenarios that hold warming below 2 °C show high deployment of carbon dioxide removal (CDR), resulting in a peak-and-decline behavior in global temperature. This is driven by the assumption of an exponentially increasing carbon price trajectory which is perceived to be economically optimal for meeting a carbon budget. However, this optimality relies on the assumption that a finite carbon budget associated with a temperature target is filled up steadily over time. The availability of net carbon removals invalidates this assumption and therefore a different carbon price trajectory should be chosen. We show how the optimal carbon price path for remaining well below 2 °C limits CDR demand and analyze requirements for constructing alternatives, which may be easier to implement in reality. We show that warming can be held at well below 2 °C at much lower long-term economic effort and lower CDR deployment and therefore lower risks if carbon prices are high enough in the beginning to ensure target compliance, but increase at a lower rate after carbon neutrality has been reached.
  • Item
    Between Scylla and Charybdis: Delayed mitigation narrows the passage between large-scale CDR and high costs
    (Bristol : IOP Publishing, 2018) Strefler, Jessica; Bauer, Nico; Kriegler, Elmar; Popp, Alexander; Giannousakis, Anastasis; Edenhofer, Ottmar
    There are major concerns about the sustainability of large-scale deployment of carbon dioxide removal (CDR) technologies. It is therefore an urgent question to what extent CDR will be needed to implement the long term ambition of the Paris Agreement. Here we show that ambitious near term mitigation significantly decreases CDR requirements to keep the Paris climate targets within reach. Following the nationally determined contributions (NDCs) until 2030 makes 2 °C unachievable without CDR. Reducing 2030 emissions by 20% below NDC levels alleviates the trade-off between high transitional challenges and high CDR deployment. Nevertheless, transitional challenges increase significantly if CDR is constrained to less than 5 Gt CO2 a−1 in any year. At least 8 Gt CO2 a−1 CDR are necessary in the long term to achieve 1.5 °C and more than 15 Gt CO2 a−1 to keep transitional challenges in bounds.
  • Item
    Economic mitigation challenges: How further delay closes the door for achieving climate targets
    (Bristol : IOP Publishing, 2013) Luderer, Gunnar; Pietzcker, Robert C.; Bertram, Christoph; Kriegler, Elmar; Meinshausen, Malte; Edenhofer, Ottmar
    While the international community aims to limit global warming to below 2 ° C to prevent dangerous climate change, little progress has been made towards a global climate agreement to implement the emissions reductions required to reach this target. We use an integrated energy–economy–climate modeling system to examine how a further delay of cooperative action and technology availability affect climate mitigation challenges. With comprehensive emissions reductions starting after 2015 and full technology availability we estimate that maximum 21st century warming may still be limited below 2 ° C with a likely probability and at moderate economic impacts. Achievable temperature targets rise by up to ~0.4 ° C if the implementation of comprehensive climate policies is delayed by another 15 years, chiefly because of transitional economic impacts. If carbon capture and storage (CCS) is unavailable, the lower limit of achievable targets rises by up to ~0.3 ° C. Our results show that progress in international climate negotiations within this decade is imperative to keep the 2 ° C target within reach.
  • Item
    Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century
    (Amsterdam : Elsevier, 2016) Kriegler, Elmar; Bauer, Nico; Popp, Alexander; Humpenöder, Florian; Leimbach, Marian; Strefler, Jessica; Baumstark, Lavinia; Bodirsky, Benjamin Leon; Hilaire, Jérôme; Klein, David; Mouratiadou, Ioanna; Weindl, Isabelle; Bertram, Christoph; Dietrich, Jan-Philipp; Luderer, Gunnar; Pehl, Michaja; Pietzcker, Robert; Piontek, Franziska; Lotze-Campen, Hermann; Biewald, Anne; Bonsch, Markus; Giannousakis, Anastasis; Kreidenweis, Ulrich; Müller, Christoph; Rolinski, Susanne; Schultes, Anselm; Schwanitz, Jana; Stevanovic, Miodrag; Calvin, Katherine; Emmerling, Johannes; Fujimori, Shinichiro; Edenhofer, Ottmar
    This paper presents a set of energy and resource intensive scenarios based on the concept of Shared Socio-Economic Pathways (SSPs). The scenario family is characterized by rapid and fossil-fueled development with high socio-economic challenges to mitigation and low socio-economic challenges to adaptation (SSP5). A special focus is placed on the SSP5 marker scenario developed by the REMIND-MAgPIE integrated assessment modeling framework. The SSP5 baseline scenarios exhibit very high levels of fossil fuel use, up to a doubling of global food demand, and up to a tripling of energy demand and greenhouse gas emissions over the course of the century, marking the upper end of the scenario literature in several dimensions. These scenarios are currently the only SSP scenarios that result in a radiative forcing pathway as high as the highest Representative Concentration Pathway (RCP8.5). This paper further investigates the direct impact of mitigation policies on the SSP5 energy, land and emissions dynamics confirming high socio-economic challenges to mitigation in SSP5. Nonetheless, mitigation policies reaching climate forcing levels as low as in the lowest Representative Concentration Pathway (RCP2.6) are accessible in SSP5. The SSP5 scenarios presented in this paper aim to provide useful reference points for future climate change, climate impact, adaption and mitigation analysis, and broader questions of sustainable development.
  • Item
    Short term policies to keep the door open for Paris climate goals
    (Bristol : IOP Publ., 2018) Kriegler, Elmar; Bertram, Christoph; Kuramochi, Takeshi; Jakob, Michael; Pehl, Michaja; Stevanović, Miodrag; Höhne, Niklas; Luderer, Gunnar; Minx, Jan C; Fekete, Hanna; Hilaire, Jérôme; Luna, Lisa; Popp, Alexander; Steckel, Jan Christoph; Sterl, Sebastian; Yalew, Amsalu Woldie; Dietrich, Jan Philipp; Edenhofer, Ottmar
    Climate policy needs to account for political and social acceptance. Current national climate policy plans proposed under the Paris Agreement lead to higher emissions until 2030 than cost-effective pathways towards the Agreements' long-term temperature goals would imply. Therefore, the current plans would require highly disruptive changes, prohibitive transition speeds, and large long-term deployment of risky mitigation measures for achieving the agreement's temperature goals after 2030. Since the prospects of introducing the cost-effective policy instrument, a global comprehensive carbon price in the near-term, are negligible, we study how a strengthening of existing plans by a global roll-out of regional policies can ease the implementation challenge of reaching the Paris temperature goals. The regional policies comprise a bundle of regulatory policies in energy supply, transport, buildings, industry, and land use and moderate, regionally differentiated carbon pricing. We find that a global roll-out of these policies could reduce global CO2 emissions by an additional 10 GtCO2eq in 2030 compared to current plans. It would lead to emissions pathways close to the levels of cost-effective likely below 2 °C scenarios until 2030, thereby reducing implementation challenges post 2030. Even though a gradual phase-in of a portfolio of regulatory policies might be less disruptive than immediate cost-effective carbon pricing, it would perform worse in other dimensions. In particular, it leads to higher economic impacts that could become major obstacles in the long-term. Hence, such policy packages should not be viewed as alternatives to carbon pricing, but rather as complements that provide entry points to achieve the Paris climate goals.
  • Item
    Introduction to the AMPERE model intercomparison studies on the economics of climate stabilization
    (Amsterdam [u.a.] : Elsevier Science, 2014) Kriegler, Elmar; Riahi, Keywan; Bosetti, Valentina; Capros, Pantelis; Petermann, Nils; van Vuuren, Detlef P.; Weyant, John P.; Edenhofer, Ottmar
    [No abstract available]
  • Item
    Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy
    (Amsterdam [u.a.] : Elsevier Science, 2014) Kriegler, Elmar; Riahi, Keywan; Bauer, Nico; Schwanitz, Valeria Jana; Petermann, Nils; Bosetti, Valentina; Marcucci, Adriana; Otto, Sander; Paroussos, Leonidas; Rao, Shilpa; Currás, Tabaré Arroyo; Ashina, Shuichi; Bollen, Johannes; Eom, Jiyong; Hamdi-Cherif, Meriem; Longden, Thomas; Kitous, Alban; Méjean, Aurélie; Sano, Fuminori; Schaeffer, Michiel; Wada, Kenichi; Capros, Pantelis; van Vuuren, Detlef P.; Edenhofer, Ottmar
    This study explores a situation of staged accession to a global climate policy regime from the current situation of regionally fragmented and moderate climate action. The analysis is based on scenarios in which a front runner coalition – the EU or the EU and China – embarks on immediate ambitious climate action while the rest of the world makes a transition to a global climate regime between 2030 and 2050. We assume that the ensuing regime involves strong mitigation efforts but does not require late joiners to compensate for their initially higher emissions. Thus, climate targets are relaxed, and although staged accession can achieve significant reductions of global warming, the resulting climate outcome is unlikely to be consistent with the goal of limiting global warming to 2 degrees. The addition of China to the front runner coalition can reduce pre-2050 excess emissions by 20–30%, increasing the likelihood of staying below 2 degrees. Not accounting for potential co-benefits, the cost of front runner action is found to be lower for the EU than for China. Regions that delay their accession to the climate regime face a trade-off between reduced short term costs and higher transitional requirements due to larger carbon lock-ins and more rapidly increasing carbon prices during the accession period.
  • Item
    Locked into Copenhagen pledges - Implications of short-term emission targets for the cost and feasibility of long-term climate goals
    (Amsterdam [u.a.] : Elsevier Science, 2013) Riahi, Keywan; Kriegler, Elmar; Johnson, Nils; Bertram, Christoph; den Elzen, Michel; Eom, Jiyong; Schaeffer, Michiel; Edmonds, Jae; Isaac, Morna; Krey, Volker; Longden, Thomas; Luderer, Gunnar; Méjean, Aurélie; McCollum, David L.; Mima, Silvana; Turton, Hal; van Vuuren, Detlef P.; Wada, Kenichi; Bosetti, Valentina; Capros, Pantelis; Criqui, Patrick; Hamdi-Cherif, Meriem; Kainuma, Mikiko; Edenhofer, Ottmar
    This paper provides an overview of the AMPERE modeling comparison project with focus on the implications of near-term policies for the costs and attainability of long-term climate objectives. Nine modeling teams participated in the project to explore the consequences of global emissions following the proposed policy stringency of the national pledges from the Copenhagen Accord and Cancún Agreements to 2030. Specific features compared to earlier assessments are the explicit consideration of near-term 2030 emission targets as well as the systematic sensitivity analysis for the availability and potential of mitigation technologies. Our estimates show that a 2030 mitigation effort comparable to the pledges would result in a further “lock-in” of the energy system into fossil fuels and thus impede the required energy transformation to reach low greenhouse-gas stabilization levels (450 ppm CO2e). Major implications include significant increases in mitigation costs, increased risk that low stabilization targets become unattainable, and reduced chances of staying below the proposed temperature change target of 2 °C in case of overshoot. With respect to technologies, we find that following the pledge pathways to 2030 would narrow policy choices, and increases the risks that some currently optional technologies, such as carbon capture and storage (CCS) or the large-scale deployment of bioenergy, will become “a must” by 2030.