Search Results

Now showing 1 - 10 of 19
Loading...
Thumbnail Image
Item

Statistical Analysis of Scanning Fluorescence Correlation Spectroscopy Data Differentiates Free from Hindered Diffusion

2018-7-20, Schneider, Falk, Waithe, Dominic, Lagerholm, B. Christoffer, Shrestha, Dilip, Sezgin, Erdinc, Eggeling, Christian, Fritzsche, Marco

Cells rely on versatile diffusion dynamics in their plasma membrane. Quantification of this often heterogeneous diffusion is essential to the understanding of cell regulation and function. Yet such measurements remain a major challenge in cell biology, usually due to low sampling throughput, a necessity for dedicated equipment, sophisticated fluorescent label strategies, and limited sensitivity. Here, we introduce a robust, broadly applicable statistical analysis pipeline for large scanning fluorescence correlation spectroscopy data sets, which uncovers the nanoscale heterogeneity of the plasma membrane in living cells by differentiating free from hindered diffusion modes of fluorescent lipid and protein analogues.

Loading...
Thumbnail Image
Item

How to minimize dye-induced perturbations while studying biomembrane structure and dynamics: PEG linkers as a rational alternative

2018, Mobarak, Edouard, Javanainen, Matti, Kulig, Waldemar, Honigmann, Alf, Sezgin, Erdinc, Aho, Noora, Eggeling, Christian, Rog, Tomasz, Vattulainen, Ilpo

Organic dye-tagged lipid analogs are essential for many fluorescence-based investigations of complex membrane structures, especially when using advanced microscopy approaches. However, lipid analogs may interfere with membrane structure and dynamics, and it is not obvious that the properties of lipid analogs would match those of non-labeled host lipids. In this work, we bridged atomistic simulations with super-resolution imaging experiments and biomimetic membranes to assess the performance of commonly used sphingomyelin-based lipid analogs. The objective was to compare, on equal footing, the relative strengths and weaknesses of acyl chain labeling, headgroup labeling, and labeling based on poly-ethyl-glycol (PEG) linkers in determining biomembrane properties. We observed that the most appropriate strategy to minimize dye-induced membrane perturbations and to allow consideration of Brownian-like diffusion in liquid-ordered membrane environments is to decouple the dye from a membrane by a PEG linker attached to a lipid headgroup. Yet, while the use of PEG linkers may sound a rational and even an obvious approach to explore membrane dynamics, the results also suggest that the dyes exploiting PEG linkers interfere with molecular interactions and their dynamics. Overall, the results highlight the great care needed when using fluorescent lipid analogs, in particular accurate controls.

Loading...
Thumbnail Image
Item

Nanoparticles Can Wrap Epithelial Cell Membranes and Relocate Them Across the Epithelial Cell Layer

2018-7-24, Urbančič, Iztok, Garvas, Maja, Kokot, Boštjan, Majaron, Hana, Umek, Polona, Cassidy, Hilary, Škarabot, Miha, Schneider, Falk, Galiani, Silvia, Arsov, Zoran, Koklic, Tilen, Matallanas, David, Čeh, Miran, Muševič, Igor, Eggeling, Christian, Štrancar, Janez

Although the link between the inhalation of nanoparticles and cardiovascular disease is well established, the causal pathway between nanoparticle exposure and increased activity of blood coagulation factors remains unexplained. To initiate coagulation tissue factor bearing epithelial cell membranes should be exposed to blood, on the other side of the less than a micrometre thin air-blood barrier. For the inhaled nanoparticles to promote coagulation, they need to bind lung epithelial-cell membrane parts and relocate them into the blood. To assess this hypothesis, we use advanced microscopy and spectroscopy techniques to show that the nanoparticles wrap themselves with epithelial-cell membranes, leading to the membrane’s disruption. The membrane-wrapped nanoparticles are then observed to freely diffuse across the damaged epithelial cell layer relocating epithelial cell membrane parts over the epithelial layer. Proteomic analysis of the protein content in the nanoparticles wraps/corona finally reveals the presence of the coagulation-initiating factors, supporting the proposed causal link between the inhalation of nanoparticles and cardiovascular disease.

Loading...
Thumbnail Image
Item

Complementary studies of lipid membrane dynamics using iSCAT and super-resolved fluorescence correlation spectroscopy

2018, Reina, Francesco, Galiani, Silvia, Shrestha, Dilip, Sezgin, Erdinc, de Wit, Gabrielle, Cole, Daniel, Christoffer Lagerholm, B., Kukura, Philipp, Eggeling, Christian

Observation techniques with high spatial and temporal resolution, such as single-particle tracking based on interferometric scattering (iSCAT) microscopy, and fluorescence correlation spectroscopy applied on a super-resolution STED microscope (STED-FCS), have revealed new insights of the molecular organization of membranes. While delivering complementary information, there are still distinct differences between these techniques, most prominently the use of fluorescent dye tagged probes for STED-FCS and a need for larger scattering gold nanoparticle tags for iSCAT. In this work, we have used lipid analogues tagged with a hybrid fluorescent tag–gold nanoparticle construct, to directly compare the results from STED-FCS and iSCAT measurements of phospholipid diffusion on a homogeneous supported lipid bilayer (SLB). These comparative measurements showed that while the mode of diffusion remained free, at least at the spatial (>40 nm) and temporal (50  ⩽  t  ⩽  100 ms) scales probed, the diffussion coefficient was reduced by 20- to 60-fold when tagging with 20 and 40 nm large gold particles as compared to when using dye tagged lipid analogues. These FCS measurements of hybrid fluorescent tag–gold nanoparticle labeled lipids also revealed that commercially supplied streptavidin-coated gold nanoparticles contain large quantities of free streptavidin. Finally, the values of apparent diffusion coefficients obtained by STED-FCS and iSCAT differed by a factor of 2–3 across the techniques, while relative differences in mobility between different species of lipid analogues considered were identical in both approaches. In conclusion, our experiments reveal that large and potentially cross-linking scattering tags introduce a significant slow-down in diffusion on SLBs but no additional bias, and our labeling approach creates a new way of exploiting complementary information from STED-FCS and iSCAT measurements.

Loading...
Thumbnail Image
Item

Lipid Composition but Not Curvature Is the Determinant Factor for the Low Molecular Mobility Observed on the Membrane of Virus-Like Vesicles

2018, Urbančič, Iztok, Brun, Juliane, Shrestha, Dilip, Waithe, Dominic, Eggeling, Christian, Chojnacki, Jakub

Human Immunodeficiency Virus type-1 (HIV-1) acquires its lipid membrane from the plasma membrane of the infected cell from which it buds out. Previous studies have shown that the HIV-1 envelope is an environment of very low mobility, with the diffusion of incorporated proteins two orders of magnitude slower than in the plasma membrane. One of the reasons for this difference is thought to be the HIV-1 membrane composition that is characterised by a high degree of rigidity and lipid packing, which has, until now, been difficult to assess experimentally. To further refine the model of the molecular mobility on the HIV-1 surface, we herein investigated the relative importance of membrane composition and curvature in simplified model membrane systems, large unilamellar vesicles (LUVs) of different lipid compositions and sizes (0.1–1 µm), using super-resolution stimulated emission depletion (STED) microscopy-based fluorescence correlation spectroscopy (STED-FCS). Establishing an approach that is also applicable to measurements of molecule dynamics in virus-sized particles, we found, at least for the 0.1–1 µm sized vesicles, that the lipid composition and thus membrane rigidity, but not the curvature, play an important role in the decreased molecular mobility on the vesicles’ surface. This observation suggests that the composition of the envelope rather than the particle geometry contributes to the previously described low mobility of proteins on the HIV-1 surface. Our vesicle-based study thus provides further insight into the dynamic properties of the surface of individual HIV-1 particles, as well as paves the methodological way towards better characterisation of the properties and function of viral lipid envelopes in general.

Loading...
Thumbnail Image
Item

Orchestrated control of filaggrin-actin scaffolds underpins cornification

2018, Gutowska-Owsiak, Danuta, de La Serna, Jorge Bernardino, Fritzsche, Marco, Naeem, Aishath, Podobas, Ewa I., Leeming, Michael, Colin-York, Huw, O’Shaughnessy, Ryan, Eggeling, Christian, Ogg, Graham S.

Epidermal stratification critically depends on keratinocyte differentiation and programmed death by cornification, leading to formation of a protective skin barrier. Cornification is dynamically controlled by the protein filaggrin, rapidly released from keratohyalin granules (KHGs). However, the mechanisms of cornification largely remain elusive, partly due to limitations of the observation techniques employed to study filaggrin organization in keratinocytes. Moreover, while the abundance of keratins within KHGs has been well described, it is not clear whether actin also contributes to their formation or fate. We employed advanced (super-resolution) microscopy to examine filaggrin organization and dynamics in skin and human keratinocytes during differentiation. We found that filaggrin organization depends on the cytoplasmic actin cytoskeleton, including the role for α- and β-actin scaffolds. Filaggrin-containing KHGs displayed high mobility and migrated toward the nucleus during differentiation. Pharmacological disruption targeting actin networks resulted in granule disintegration and accelerated cornification. We identified the role of AKT serine/threonine kinase 1 (AKT1), which controls binding preference and function of heat shock protein B1 (HspB1), facilitating the switch from actin stabilization to filaggrin processing. Our results suggest an extended model of cornification in which filaggrin utilizes actins to effectively control keratinocyte differentiation and death, promoting epidermal stratification and formation of a fully functional skin barrier.

Loading...
Thumbnail Image
Item

Nanoscale Spatiotemporal Diffusion Modes Measured by Simultaneous Confocal and Stimulated Emission Depletion Nanoscopy Imaging

2018-6-12, Schneider, Falk, Waithe, Dominic, Galiani, Silvia, Bernardino de la Serna, Jorge, Sezgin, Erdinc, Eggeling, Christian

The diffusion dynamics in the cellular plasma membrane provide crucial insights into molecular interactions, organization, and bioactivity. Beam-scanning fluorescence correlation spectroscopy combined with super-resolution stimulated emission depletion nanoscopy (scanning STED–FCS) measures such dynamics with high spatial and temporal resolution. It reveals nanoscale diffusion characteristics by measuring the molecular diffusion in conventional confocal mode and super-resolved STED mode sequentially for each pixel along the scanned line. However, to directly link the spatial and the temporal information, a method that simultaneously measures the diffusion in confocal and STED modes is needed. Here, to overcome this problem, we establish an advanced STED–FCS measurement method, line interleaved excitation scanning STED–FCS (LIESS–FCS), that discloses the molecular diffusion modes at different spatial positions with a single measurement. It relies on fast beam-scanning along a line with alternating laser illumination that yields, for each pixel, the apparent diffusion coefficients for two different observation spot sizes (conventional confocal and super-resolved STED). We demonstrate the potential of the LIESS–FCS approach with simulations and experiments on lipid diffusion in model and live cell plasma membranes. We also apply LIESS–FCS to investigate the spatiotemporal organization of glycosylphosphatidylinositol-anchored proteins in the plasma membrane of live cells, which, interestingly, show multiple diffusion modes at different spatial positions.

Loading...
Thumbnail Image
Item

Nanoscale dynamics of cholesterol in the cell membrane

2019, Pinkwart, Kerstin, Schneider, Falk, Lukoseviciute, Martyna, Sauka-Spengler, Tatjana, Lyman, Edward, Eggeling, Christian, Sezgin, Erdinc

Cholesterol constitutes ~30-40% of the mammalian plasma membrane, a larger fraction than of any other single component. It is a major player in numerous signaling processes as well as in shaping molecular membrane architecture. However, our knowledge of the dynamics of cholesterol in the plasma membrane is limited, restricting our understanding of the mechanisms regulating its involvement in cell signaling. Here, we applied advanced fluorescence imaging and spectroscopy approaches on in vitro (model membranes) and in vivo (live cells and embryos) membranes as well as in silico analysis to systematically study the nanoscale dynamics of cholesterol in biological membranes. Our results indicate that cholesterol diffuses faster than phospholipids in live membranes, but not in model membranes. Interestingly, a detailed statistical diffusion analysis suggested two-component diffusion for cholesterol in the plasma membrane of live cells. One of these components was similar to a freely diffusing phospholipid analogue, whereas the other one was significantly faster. When a cholesterol analogue was localized to the outer leaflet only, the fast diffusion of cholesterol disappeared, and it diffused similarly to phospholipids. Overall, our results suggest that cholesterol diffusion in the cell membrane is heterogeneous and that this diffusional heterogeneity is due to cholesterol's nanoscale interactions and localization in the membrane. © 2019 Pinkwart et al. Published by The American Society for Biochemistry and Molecular Biology, Inc.

Loading...
Thumbnail Image
Item

Spironaphthoxazine switchable dyes for biological imaging

2018, Xiong, Yaoyao, Vargas Jentzsch, Andreas, Osterrieth, Johannes W. M., Sezgin, Erdinc, Sazanovich, Igor V., Reglinski, Katharina, Galiani, Silvia, Parker, Anthony W., Eggeling, Christian, Anderson, Harry L.

Recent developments in super-resolution microscopy have significantly expanded the requirements for switchable dyes, leading to demand for specially designed molecular switches. We report the synthesis and characterization of a spironaphthoxazine photochromic switch (a derivative of palatinate purple) displaying high photoconversion (85-95%) under readily accessible 405 nm light, broad absorption in the visible, and excellent fatigue resistance. The indole substituent on this spironaphthoxazine is twisted out of conjugation with the naphthalene unit, yet it is crucial for activation with visible light. The open colored merocyanine form of the spironaphthoxazine reverts to the closed form with a lifetime of 4.7 s in dichloromethane at 20 °C; this thermal reversion is even faster in more polar solvents. The photochemical quantum yields for ring-opening and ring-closing are approximately 8% and 1%, respectively, in dichloromethane. The ring-opening and ring-closing reactions have been characterized by time-resolved infrared and transient absorption spectroscopies. Ring opening occurs rapidly (τ = 2.1 ns) and efficiently (∼90%) from the singlet excited state to form an intermediate (assigned as a cisoid merocyanine), which returns to the closed ground state (τ = 4.5 ns) in competition with relaxation to the transoid open form (τ = 40 ns). Photochemical ring closing is a faster and simpler process: the excited state proceeds to the closed spirooxazine with a time constant of 0.28 ns. This photochromic switch can be used in conjunction with commercial fluorescent dyes to create a small-molecule switchable fluorescent dyad that shows high contrast and good fatigue resistance in living cells. These properties make the dyads suitable for application in RESOLFT microscopy.

Loading...
Thumbnail Image
Item

Advances in bioimaging - Challenges and potentials

2018, Eggeling, Christian

[No abstract available]