Search Results

Now showing 1 - 10 of 19
Loading...
Thumbnail Image
Item

Advances in bioimaging - Challenges and potentials

2018, Eggeling, Christian

[No abstract available]

Loading...
Thumbnail Image
Item

HIV-1 Gag specifically restricts PI(4,5)P2 and cholesterol mobility in living cells creating a nanodomain platform for virus assembly

2019, Favard, C., Chojnacki, Jakub, Merida, P., Yandrapalli, N., Mak, J., Eggeling, Christian, Muriaux, D.

HIV-1 Gag protein assembles at the plasma membrane of infected cells for viral particle formation. Gag targets lipids, mainly PI(4,5)P2, at the inner leaflet of this membrane. Here, we address the question whether Gag is able to trap specifically PI(4,5)P2 or other lipids during HIV-1 assembly in the host CD4+ T lymphocytes. Lipid dynamics within and away from HIV-1 assembly sites were determined using super-resolution microscopy coupled with scanning fluorescence correlation spectroscopy in living cells. Analysis of HIV-1–infected cells revealed that, upon assembly, HIV-1 is able to specifically trap PI(4,5)P2 and cholesterol, but not phosphatidylethanolamine or sphingomyelin. Furthermore, our data showed that Gag is the main driving force to restrict the mobility of PI(4,5)P2 and cholesterol at the cell plasma membrane. This is the first direct evidence highlighting that HIV-1 creates its own specific lipid environment by selectively recruiting PI(4,5)P2 and cholesterol as a membrane nanoplatform for virus assembly.

Loading...
Thumbnail Image
Item

Statistical Analysis of Scanning Fluorescence Correlation Spectroscopy Data Differentiates Free from Hindered Diffusion

2018-7-20, Schneider, Falk, Waithe, Dominic, Lagerholm, B. Christoffer, Shrestha, Dilip, Sezgin, Erdinc, Eggeling, Christian, Fritzsche, Marco

Cells rely on versatile diffusion dynamics in their plasma membrane. Quantification of this often heterogeneous diffusion is essential to the understanding of cell regulation and function. Yet such measurements remain a major challenge in cell biology, usually due to low sampling throughput, a necessity for dedicated equipment, sophisticated fluorescent label strategies, and limited sensitivity. Here, we introduce a robust, broadly applicable statistical analysis pipeline for large scanning fluorescence correlation spectroscopy data sets, which uncovers the nanoscale heterogeneity of the plasma membrane in living cells by differentiating free from hindered diffusion modes of fluorescent lipid and protein analogues.

Loading...
Thumbnail Image
Item

Adaptive optics allows STED-FCS measurements in the cytoplasm of living cells

2019, Barbotin, Aurélien, Galiani, Silvia, Urbančič, Iztok, Eggeling, Christian, Booth, Martin J.

Fluorescence correlation spectroscopy in combination with super-resolution stimulated emission depletion microscopy (STED-FCS) is a powerful tool to investigate molecular diffusion with sub-diffraction resolution. It has been of particular use for investigations of two dimensional systems like cell membranes, but has so far seen very limited applications to studies of three-dimensional diffusion. One reason for this is the extreme sensitivity of the axial (z) STED depletion pattern to optical aberrations. We present here an adaptive optics-based correction method that compensates for these aberrations and allows STED-FCS measurements in the cytoplasm of living cells.

Loading...
Thumbnail Image
Item

Zooming in on virus surface protein mobility

2018, Chojnacki, Jakub, Eggeling, Christian

[no abstract available]

Loading...
Thumbnail Image
Item

Nanoscale Spatiotemporal Diffusion Modes Measured by Simultaneous Confocal and Stimulated Emission Depletion Nanoscopy Imaging

2018-6-12, Schneider, Falk, Waithe, Dominic, Galiani, Silvia, Bernardino de la Serna, Jorge, Sezgin, Erdinc, Eggeling, Christian

The diffusion dynamics in the cellular plasma membrane provide crucial insights into molecular interactions, organization, and bioactivity. Beam-scanning fluorescence correlation spectroscopy combined with super-resolution stimulated emission depletion nanoscopy (scanning STED–FCS) measures such dynamics with high spatial and temporal resolution. It reveals nanoscale diffusion characteristics by measuring the molecular diffusion in conventional confocal mode and super-resolved STED mode sequentially for each pixel along the scanned line. However, to directly link the spatial and the temporal information, a method that simultaneously measures the diffusion in confocal and STED modes is needed. Here, to overcome this problem, we establish an advanced STED–FCS measurement method, line interleaved excitation scanning STED–FCS (LIESS–FCS), that discloses the molecular diffusion modes at different spatial positions with a single measurement. It relies on fast beam-scanning along a line with alternating laser illumination that yields, for each pixel, the apparent diffusion coefficients for two different observation spot sizes (conventional confocal and super-resolved STED). We demonstrate the potential of the LIESS–FCS approach with simulations and experiments on lipid diffusion in model and live cell plasma membranes. We also apply LIESS–FCS to investigate the spatiotemporal organization of glycosylphosphatidylinositol-anchored proteins in the plasma membrane of live cells, which, interestingly, show multiple diffusion modes at different spatial positions.

Loading...
Thumbnail Image
Item

Lipid Composition but Not Curvature Is the Determinant Factor for the Low Molecular Mobility Observed on the Membrane of Virus-Like Vesicles

2018, Urbančič, Iztok, Brun, Juliane, Shrestha, Dilip, Waithe, Dominic, Eggeling, Christian, Chojnacki, Jakub

Human Immunodeficiency Virus type-1 (HIV-1) acquires its lipid membrane from the plasma membrane of the infected cell from which it buds out. Previous studies have shown that the HIV-1 envelope is an environment of very low mobility, with the diffusion of incorporated proteins two orders of magnitude slower than in the plasma membrane. One of the reasons for this difference is thought to be the HIV-1 membrane composition that is characterised by a high degree of rigidity and lipid packing, which has, until now, been difficult to assess experimentally. To further refine the model of the molecular mobility on the HIV-1 surface, we herein investigated the relative importance of membrane composition and curvature in simplified model membrane systems, large unilamellar vesicles (LUVs) of different lipid compositions and sizes (0.1–1 µm), using super-resolution stimulated emission depletion (STED) microscopy-based fluorescence correlation spectroscopy (STED-FCS). Establishing an approach that is also applicable to measurements of molecule dynamics in virus-sized particles, we found, at least for the 0.1–1 µm sized vesicles, that the lipid composition and thus membrane rigidity, but not the curvature, play an important role in the decreased molecular mobility on the vesicles’ surface. This observation suggests that the composition of the envelope rather than the particle geometry contributes to the previously described low mobility of proteins on the HIV-1 surface. Our vesicle-based study thus provides further insight into the dynamic properties of the surface of individual HIV-1 particles, as well as paves the methodological way towards better characterisation of the properties and function of viral lipid envelopes in general.

Loading...
Thumbnail Image
Item

Nanoparticles Can Wrap Epithelial Cell Membranes and Relocate Them Across the Epithelial Cell Layer

2018-7-24, Urbančič, Iztok, Garvas, Maja, Kokot, Boštjan, Majaron, Hana, Umek, Polona, Cassidy, Hilary, Škarabot, Miha, Schneider, Falk, Galiani, Silvia, Arsov, Zoran, Koklic, Tilen, Matallanas, David, Čeh, Miran, Muševič, Igor, Eggeling, Christian, Štrancar, Janez

Although the link between the inhalation of nanoparticles and cardiovascular disease is well established, the causal pathway between nanoparticle exposure and increased activity of blood coagulation factors remains unexplained. To initiate coagulation tissue factor bearing epithelial cell membranes should be exposed to blood, on the other side of the less than a micrometre thin air-blood barrier. For the inhaled nanoparticles to promote coagulation, they need to bind lung epithelial-cell membrane parts and relocate them into the blood. To assess this hypothesis, we use advanced microscopy and spectroscopy techniques to show that the nanoparticles wrap themselves with epithelial-cell membranes, leading to the membrane’s disruption. The membrane-wrapped nanoparticles are then observed to freely diffuse across the damaged epithelial cell layer relocating epithelial cell membrane parts over the epithelial layer. Proteomic analysis of the protein content in the nanoparticles wraps/corona finally reveals the presence of the coagulation-initiating factors, supporting the proposed causal link between the inhalation of nanoparticles and cardiovascular disease.

Loading...
Thumbnail Image
Item

Complementary studies of lipid membrane dynamics using iSCAT and super-resolved fluorescence correlation spectroscopy

2018, Reina, Francesco, Galiani, Silvia, Shrestha, Dilip, Sezgin, Erdinc, de Wit, Gabrielle, Cole, Daniel, Christoffer Lagerholm, B., Kukura, Philipp, Eggeling, Christian

Observation techniques with high spatial and temporal resolution, such as single-particle tracking based on interferometric scattering (iSCAT) microscopy, and fluorescence correlation spectroscopy applied on a super-resolution STED microscope (STED-FCS), have revealed new insights of the molecular organization of membranes. While delivering complementary information, there are still distinct differences between these techniques, most prominently the use of fluorescent dye tagged probes for STED-FCS and a need for larger scattering gold nanoparticle tags for iSCAT. In this work, we have used lipid analogues tagged with a hybrid fluorescent tag–gold nanoparticle construct, to directly compare the results from STED-FCS and iSCAT measurements of phospholipid diffusion on a homogeneous supported lipid bilayer (SLB). These comparative measurements showed that while the mode of diffusion remained free, at least at the spatial (>40 nm) and temporal (50  ⩽  t  ⩽  100 ms) scales probed, the diffussion coefficient was reduced by 20- to 60-fold when tagging with 20 and 40 nm large gold particles as compared to when using dye tagged lipid analogues. These FCS measurements of hybrid fluorescent tag–gold nanoparticle labeled lipids also revealed that commercially supplied streptavidin-coated gold nanoparticles contain large quantities of free streptavidin. Finally, the values of apparent diffusion coefficients obtained by STED-FCS and iSCAT differed by a factor of 2–3 across the techniques, while relative differences in mobility between different species of lipid analogues considered were identical in both approaches. In conclusion, our experiments reveal that large and potentially cross-linking scattering tags introduce a significant slow-down in diffusion on SLBs but no additional bias, and our labeling approach creates a new way of exploiting complementary information from STED-FCS and iSCAT measurements.

Loading...
Thumbnail Image
Item

Molecular recognition of the native HIV-1 MPER revealed by STED microscopy of single virions

2019, Carravilla, Pablo, Chojnacki, Jakub, Rujas, Edurne, Insausti, Sara, Largo, Eneko, Waithe, Dominic, Apellaniz, Beatriz, Sicard, Taylor, Julien, Jean-Philippe, Eggeling, Christian, Nieva, José L.

Antibodies against the Membrane-Proximal External Region (MPER) of the Env gp41 subunit neutralize HIV-1 with exceptional breadth and potency. Due to the lack of knowledge on the MPER native structure and accessibility, different and exclusive models have been proposed for the molecular mechanism of MPER recognition by broadly neutralizing antibodies. Here, accessibility of antibodies to the native Env MPER on single virions has been addressed through STED microscopy. STED imaging of fluorescently labeled Fabs reveals a common pattern of native Env recognition for HIV-1 antibodies targeting MPER or the surface subunit gp120. In the case of anti-MPER antibodies, the process evolves with extra contribution of interactions with the viral lipid membrane to binding specificity. Our data provide biophysical insights into the recognition of the potent and broadly neutralizing MPER epitope on HIV virions, and as such is of importance for the design of therapeutic interventions.