Search Results

Now showing 1 - 10 of 38
  • Item
    Background Reduction in STED-FCS Using a Bivortex Phase Mask
    (Washington, DC : ACS Publications, 2020) Barbotin, Aurélien; Urbančič, Iztok; Galiani, Silvia; Eggeling, Christian; Booth, Martin
    Fluorescence correlation spectroscopy (FCS) is a valuable tool to study the molecular dynamics in living cells. When used together with a super-resolution stimulated emission depletion (STED) microscope, STED-FCS can measure diffusion processes on the nanoscale in living cells. In two-dimensional (2D) systems like the cellular plasma membrane, a ring-shaped depletion focus is most commonly used to increase the lateral resolution, leading to more than 25-fold decrease in the observation volume, reaching the relevant scale of supramolecular arrangements. However, STED-FCS faces severe limitations when measuring diffusion in three dimensions (3D), largely due to the spurious background contributions from undepleted areas of the excitation focus that reduce the signal quality and ultimately limit the resolution. In this paper, we investigate how different STED confinement modes can mitigate this issue. By simulations as well as experiments with fluorescent probes in solution and in cells, we demonstrate that the coherent-hybrid (CH) depletion pattern created by a bivortex phase mask reduces background most efficiently and thus provides superior signal quality under comparable reduction of the observation volume. Featuring also the highest robustness to common optical aberrations, CH-STED can be considered the method of choice for reliable STED-FCS-based investigations of 3D diffusion on the subdiffraction scale. Copyright © 2020 American Chemical Society.
  • Item
    Immune mobilising T cell receptors redirect polyclonal CD8+ T cells in chronic HIV infection to form immunological synapses
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2022) Wallace, Zoë; Kopycinski, Jakub; Yang, Hongbing; McCully, Michelle L.; Eggeling, Christian; Chojnacki, Jakub; Dorrell, Lucy
    T cell exhaustion develops in human immunodeficiency virus (HIV) infection due to chronic viral antigenic stimulation. This adaptive response primarily affects virus-specific CD8+ T cells, which may remain dysfunctional despite viral load-reducing antiretroviral therapy; however, abnormalities may also be evident in non-HIV-specific populations. Both could limit the efficacy of cell therapies against viral reservoirs. Here, we show that bulk (polyclonal) CD8+ T cells from people living with HIV (PLWH) express proposed markers of dysfunctional HIV-specific T cells at high levels yet form lytic immunological synapses (IS) and eliminate primary resting infected (HIV Gaglo) CD4+ T cells, when redirected by potent bispecific T cell-retargeting molecules, Immune mobilising monoclonal T cell receptors (TCR) Against Virus (ImmTAV). While PLWH CD8+ T cells are functionally impaired when compared to CD8+ T cells from HIV-naïve donors, ImmTAV redirection enables them to eliminate Gaglo CD4+ T cells that are insensitive to autologous HIV-specific cytolytic T cells. ImmTAV molecules may therefore be able to target HIV reservoirs, which represent a major barrier to a cure.
  • Item
    Advances in bioimaging - Challenges and potentials
    (Bristol : IOP Publ., 2018) Eggeling, Christian
    [No abstract available]
  • Item
    Statistical Analysis of Scanning Fluorescence Correlation Spectroscopy Data Differentiates Free from Hindered Diffusion
    (Washington, DC : Soc., 2018-7-20) Schneider, Falk; Waithe, Dominic; Lagerholm, B. Christoffer; Shrestha, Dilip; Sezgin, Erdinc; Eggeling, Christian; Fritzsche, Marco
    Cells rely on versatile diffusion dynamics in their plasma membrane. Quantification of this often heterogeneous diffusion is essential to the understanding of cell regulation and function. Yet such measurements remain a major challenge in cell biology, usually due to low sampling throughput, a necessity for dedicated equipment, sophisticated fluorescent label strategies, and limited sensitivity. Here, we introduce a robust, broadly applicable statistical analysis pipeline for large scanning fluorescence correlation spectroscopy data sets, which uncovers the nanoscale heterogeneity of the plasma membrane in living cells by differentiating free from hindered diffusion modes of fluorescent lipid and protein analogues.
  • Item
    Comparison of Multiscale Imaging Methods for Brain Research
    (Basel : MDPI, 2020) Tröger, Jessica; Hoischen, Christian; Perner, Birgit; Monajembashi, Shamci; Barbotin, Aurélien; Löschberger, Anna; Eggeling, Christian; Kessels, Michael M.; Qualmann, Britta; Hemmerich, Peter
    A major challenge in neuroscience is how to study structural alterations in the brain. Even small changes in synaptic composition could have severe outcomes for body functions. Many neuropathological diseases are attributable to disorganization of particular synaptic proteins. Yet, to detect and comprehensively describe and evaluate such often rather subtle deviations from the normal physiological status in a detailed and quantitative manner is very challenging. Here, we have compared side-by-side several commercially available light microscopes for their suitability in visualizing synaptic components in larger parts of the brain at low resolution, at extended resolution as well as at super-resolution. Microscopic technologies included stereo, widefield, deconvolution, confocal, and super-resolution set-ups. We also analyzed the impact of adaptive optics, a motorized objective correction collar and CUDA graphics card technology on imaging quality and acquisition speed. Our observations evaluate a basic set of techniques, which allow for multi-color brain imaging from centimeter to nanometer scales. The comparative multi-modal strategy we established can be used as a guide for researchers to select the most appropriate light microscopy method in addressing specific questions in brain research, and we also give insights into recent developments such as optical aberration corrections.
  • Item
    Functional Delineation of a Protein–Membrane Interaction Hotspot Site on the HIV-1 Neutralizing Antibody 10E8
    (Basel : Molecular Diversity Preservation International (MDPI), 2022) Insausti, Sara; Garcia-Porras, Miguel; Torralba, Johana; Morillo, Izaskun; Ramos-Caballero, Ander; de la Arada, Igor; Apellaniz, Beatriz; Caaveiro, Jose M. M.; Carravilla, Pablo; Eggeling, Christian; Rujas, Edurne; Nieva, Jose L.
    Antibody engagement with the membrane-proximal external region (MPER) of the envelope glycoprotein (Env) of HIV-1 constitutes a distinctive molecular recognition phenomenon, the full appreciation of which is crucial for understanding the mechanisms that underlie the broad neutralization of the virus. Recognition of the HIV-1 Env antigen seems to depend on two specific features developed by antibodies with MPER specificity: (i) a large cavity at the antigen-binding site that holds the epitope amphipathic helix; and (ii) a membrane-accommodating Fab surface that engages with viral phospholipids. Thus, besides the main Fab–peptide interaction, molecular recognition of MPER depends on semi-specific (electrostatic and hydrophobic) interactions with membranes and, reportedly, on specific binding to the phospholipid head groups. Here, based on available cryo-EM structures of Fab–Env complexes of the anti-MPER antibody 10E8, we sought to delineate the functional antibody–membrane interface using as the defining criterion the neutralization potency and binding affinity improvements induced by Arg substitutions. This rational, Arg-based mutagenesis strategy revealed the position-dependent contribution of electrostatic interactions upon inclusion of Arg-s at the CDR1, CDR2 or FR3 of the Fab light chain. Moreover, the contribution of the most effective Arg-s increased the potency enhancement induced by inclusion of a hydrophobic-at-interface Phe at position 100c of the heavy chain CDR3. In combination, the potency and affinity improvements by Arg residues delineated a protein–membrane interaction site, whose surface and position support a possible mechanism of action for 10E8-induced neutralization. Functional delineation of membrane-interacting patches could open new lines of research to optimize antibodies of therapeutic interest that target integral membrane epitopes.
  • Item
    Excited-State Dynamics in Borylated Arylisoquinoline Complexes in Solution and in cellulo
    (Weinheim : Wiley-VCH, 2023) Yang, Tingxiang; Valavalkar, Abha; Romero‐Arenas, Antonio; Dasgupta, Anindita; Then, Patrick; Chettri, Avinash; Eggeling, Christian; Ros, Abel; Pischel, Uwe; Dietzek‐Ivanšić, Benjamin
    Two four-coordinate organoboron N,C-chelate complexes with different functional terminals on the PEG chains are studied with respect to their photophysical properties within human MCF-7 cells. Their excited-state properties are characterized by time-resolved pump-probe spectroscopy and fluorescence lifetime microscopy. The excited-state relaxation dynamics of the two complexes are similar when studied in DMSO. Aggregation of the complexes with the carboxylate terminal group is observed in water. When studying the light-driven excited-state dynamics of both complexes in cellulo, i. e., after being taken up into human MCF-7 cells, both complexes show different features depending on the nature of the anchoring PEG chains. The lifetime of a characteristic intramolecular charge-transfer state is significantly shorter when studied in cellulo (360±170 ps) as compared to in DMSO (∼960 ps) at 600 nm for the complexes with an amino group. However, the kinetics of the complexes with the carboxylate group are in line with those recorded in DMSO. On the other hand, the lifetimes of the fluorescent state are almost identical for both complexes in cellulo. These findings underline the importance to evaluate the excited-state properties of fluorophores in a complex biological environment in order to fully account for intra- and intermolecular effects governing the light-induced processes in functional dyes.
  • Item
    Zooming in on virus surface protein mobility
    (London : Future Medicine Ltd, 2018) Chojnacki, Jakub; Eggeling, Christian
    [no abstract available]
  • Item
    Super-Resolution STED Microscopy-Based Mobility Studies of the Viral Env Protein at HIV-1 Assembly Sites of Fully Infected T-Cells
    (Basel : MDPI, 2021) Chojnacki, Jakub; Eggeling, Christian
    The ongoing threat of human immunodeficiency virus (HIV-1) requires continued, detailed investigations of its replication cycle, especially when combined with the most physiologically relevant, fully infectious model systems. Here, we demonstrate the application of the combination of stimulated emission depletion (STED) super-resolution microscopy with beam-scanning fluorescence correlation spectroscopy (sSTED-FCS) as a powerful tool for the interrogation of the molecular dynamics of HIV-1 virus assembly on the cell plasma membrane in the context of a fully infectious virus. In this process, HIV-1 envelope glycoprotein (Env) becomes incorporated into the assembling virus by interacting with the nascent Gag structural protein lattice. Molecular dynamics measurements at these distinct cell surface sites require a guiding strategy, for which we have used a two-colour implementation of sSTED-FCS to simultaneously target individual HIV-1 assembly sites via the aggregated Gag signal. We then compare the molecular mobility of Env proteins at the inside and outside of the virus assembly area. Env mobility was shown to be highly reduced at the assembly sites, highlighting the distinct trapping of Env as well as the usefulness of our methodological approach to study the molecular mobility of specifically targeted sites at the plasma membrane, even under high-biosafety conditions.
  • Item
    Influence of nanobody binding on fluorescence emission, mobility, and organization of GFP-tagged proteins
    (Amsterdam [u.a.] : Elsevier, 2020) Schneider, Falk; Sych, Taras; Eggeling, Christian; Sezgin, Erdinc
    Advanced fluorescence microscopy studies require specific and monovalent molecular labeling with bright and photostable fluorophores. This necessity led to the widespread use of fluorescently labeled nanobodies against commonly employed fluorescent proteins (FPs). However, very little is known how these nanobodies influence their target molecules. Here, we tested commercially available nanobodies and observed clear changes of the fluorescence properties, mobility and organization of green fluorescent protein (GFP) tagged proteins after labeling with the anti-GFP nanobody. Intriguingly, we did not observe any co-diffusion of fluorescently labeled nanobodies with the GFP-labeled proteins. Our results suggest significant binding of the nanobodies to a non-emissive, likely oligomerized, form of the FPs, promoting disassembly into monomeric form after binding. Our findings have significant implications on the application of nanobodies and GFP labeling for studying dynamic and quantitative protein organization in the plasma membrane of living cells using advanced imaging techniques.