Search Results

Now showing 1 - 3 of 3
  • Item
    The 2018 correlative microscopy techniques roadmap
    (Bristol : IOP Publishing, 2018) Ando, Toshio; Bhamidimarri, Satya Prathyusha; Brending, Niklas; Colin-York, H; Collinson, Lucy; De Jonge, Niels; de Pablo, P J; Debroye, Elke; Eggeling, Christian; Franck, Christian; Fritzsche, Marco; Gerritsen, Hans; Giepmans, Ben N G; Grunewald, Kay; Hofkens, Johan; Hoogenboom, Jacob P; Janssen, Kris P F; Kaufmann, Rainer; Klumpermann, Judith; Kurniawan, Nyoman; Kusch, Jana; Liv, Nalan; Parekh, Viha; Peckys, Diana B; Rehfeldt, Florian; Reutens, David C; Roeffaers, Maarten B J; Salditt, Tim; Schaap, Iwan A T; Schwarz, Ulrich S; Verkade, Paul; Vogel, Michael W; Wagner, Richard; Winterhalter, Mathias; Yuan, Haifeng; Zifarelli, Giovanni
    Developments in microscopy have been instrumental to progress in the life sciences, and many new techniques have been introduced and led to new discoveries throughout the last century. A wide and diverse range of methodologies is now available, including electron microscopy, atomic force microscopy, magnetic resonance imaging, small-angle x-ray scattering and multiple super-resolution fluorescence techniques, and each of these methods provides valuable read-outs to meet the demands set by the samples under study. Yet, the investigation of cell development requires a multi-parametric approach to address both the structure and spatio-temporal organization of organelles, and also the transduction of chemical signals and forces involved in cell–cell interactions. Although the microscopy technologies for observing each of these characteristics are well developed, none of them can offer read-out of all characteristics simultaneously, which limits the information content of a measurement. For example, while electron microscopy is able to disclose the structural layout of cells and the macromolecular arrangement of proteins, it cannot directly follow dynamics in living cells. The latter can be achieved with fluorescence microscopy which, however, requires labelling and lacks spatial resolution. A remedy is to combine and correlate different readouts from the same specimen, which opens new avenues to understand structure–function relations in biomedical research. At the same time, such correlative approaches pose new challenges concerning sample preparation, instrument stability, region of interest retrieval, and data analysis. Because the field of correlative microscopy is relatively young, the capabilities of the various approaches have yet to be fully explored, and uncertainties remain when considering the best choice of strategy and workflow for the correlative experiment. With this in mind, the Journal of Physics D: Applied Physics presents a special roadmap on the correlative microscopy techniques, giving a comprehensive overview from various leading scientists in this field, via a collection of multiple short viewpoints.
  • Item
    Aggregation and mobility of membrane proteins interplay with local lipid order in the plasma membrane of T cells
    (Chichester : Wiley, 2021) Urbančič, Iztok; Schiffelers, Lisa; Jenkins, Edward; Gong, Weijian; Santos, Ana Mafalda; Schneider, Falk; O'Brien-Ball, Caitlin; Vuong, Mai Tuyet; Ashman, Nicole; Sezgin, Erdinc; Eggeling, Christian
    To disentangle the elusive lipid-protein interactions in T-cell activation, we investigate how externally imposed variations in mobility of key membrane proteins (T-cell receptor [TCR], kinase Lck, and phosphatase CD45) affect the local lipid order and protein colocalisation. Using spectral imaging with polarity-sensitive membrane probes in model membranes and live Jurkat T cells, we find that partial immobilisation of proteins (including TCR) by aggregation or ligand binding changes their preference towards a more ordered lipid environment, which can recruit Lck. Our data suggest that the cellular membrane is poised to modulate the frequency of protein encounters upon alterations of their mobility, for example in ligand binding, which offers new mechanistic insight into the involvement of lipid-mediated interactions in membrane-hosted signalling events.
  • Item
    Object detection networks and augmented reality for cellular detection in fluorescence microscopy
    (New York, NY : Rockefeller Univ. Press, 2020) Waithe, Dominic; Brown, Jill M.; Reglinski, Katharina; Diez-Sevilla, Isabel; Roberts, David; Eggeling, Christian
    Object detection networks are high-performance algorithms famously applied to the task of identifying and localizing objects in photography images. We demonstrate their application for the classification and localization of cells in fluorescence microscopy by benchmarking four leading object detection algorithms across multiple challenging 2D microscopy datasets. Furthermore we develop and demonstrate an algorithm that can localize and image cells in 3D, in close to real time, at the microscope using widely available and inexpensive hardware. Furthermore, we exploit the fast processing of these networks and develop a simple and effective augmented reality (AR) system for fluorescence microscopy systems using a display screen and back-projection onto the eyepiece. We show that it is possible to achieve very high classification accuracy using datasets with as few as 26 images present. Using our approach, it is possible for relatively nonskilled users to automate detection of cell classes with a variety of appearances and enable new avenues for automation of fluorescence microscopy acquisition pipelines. © 2020 Waithe et al.