Search Results

Now showing 1 - 3 of 3
  • Item
    Implementing exact absorbing boundary condition for the linear one-dimensional Schrödinger problem with variable potential by Titchmarsh-Weyl theory
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Ehrhardt, Matthias; Zheng, Chunxiong
    A new approach for simulating the solution of the time-dependent Schrödinger equation with a general variable potential will be proposed. The key idea is to approximate the Titchmarsh-Weyl m-function (exact Dirichlet-to-Neumann operator) by a rational function with respect to a suitable spectral parameter. With the proposed method we can overcome the usual high-frequency restriction for absorbing boundary conditions of general variable potential problems. We end up with a fast computational algorithm for absorbing boundary conditions that are accurate for the full frequency band
  • Item
    Numerical simulation of quantum waveguides
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Arnold, Anton; Ehrhardt, Matthias; Schulte, Maike
    This chapter is a review of the research of the authors from the last decade and focuses on the mathematical analysis of the Schrödinger model for nano-scale semiconductor devices. We discuss transparent boundary conditions (TBCs) for the time-dependent Schrödinger equation on a two dimensional domain. First we derive the two dimensional discrete TBCs in conjunction with a conservative Crank-Nicolson-type finite difference scheme and a compact nine-point scheme. For this difference equations we derive discrete transparent boundary conditions (DTBCs) in order to get highly accurate solutions for open boundary problems. The presented discrete boundary-valued problem is unconditionally stable and completely reflection-free at the boundary. Then, since the DTBCs for the Schrödinger equation include a convolution w.r.t. time with a weakly decaying kernel, we construct approximate DTBCs with a kernel having the form of a finite sum of exponentials, which can be efficiently evaluated by recursion. In several numerical tests we illustrate the perfect absorption of outgoing waves independent of their impact angle at the boundary, the stability, and efficiency of the proposed method. Finally, we apply inhomogeneous DTBCs to the transient simulation of quantum waveguides with a prescribed electron inflow.
  • Item
    Numerical simulation of waves in periodic structures
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Ehrhardt, Matthias; Han, Houde; Zheng, Chunxiong
    In this work we present a new numerical technique for solving periodic structure problems. This new approach possesses several advantages. First, it allows for a fast evaluation of the Robin-to-Robin operator for periodic array problems. Secondly, this computational method can also be used for bi-periodic structure problems with local defects. Our strategy is an improvement of the recently developed recursive doubling process by Yuan and Lu. In this paper we consider several problems, such as the exterior elliptic problems with strong coercivity, the time-dependent Schrödinger equation and finally the Helmholtz equation with damping.