Search Results

Now showing 1 - 10 of 17
Loading...
Thumbnail Image
Item

Genotyping of methicillin resistant Staphylococcus aureus from the United Arab Emirates

2020, Senok, Abiola, Nassar, Rania, Celiloglu, Handan, Nabi, Anju, Alfaresi, Mubarak, Weber, Stefan, Rizvi, Irfan, Müller, Elke, Reissig, Annett, Gawlik, Darius, Monecke, Stefan, Ehricht, Ralf

Reports from Arabian Gulf countries have demonstrated emergence of novel methicillin resistant Staphylococcus aureus (MRSA) strains. To address the lack of data from the United Arab Emirates (UAE), genetic characterisation of MRSA identified between December 2017 and August 2019 was conducted using DNA microarray-based assays. The 625 MRSA isolates studied were grouped into 23 clonal complexes (CCs) and assigned to 103 strains. CC5, CC6, CC22 and CC30 represented 54.2% (n/N = 339/625) of isolates with other common CCs being CC1, CC8, CC772, CC361, CC80, CC88. Emergence of CC398 MRSA, CC5-MRSA-IV Sri Lanka Clone and ST5/ST225-MRSA-II, Rhine-Hesse EMRSA/New York-Japan Clone in our setting was detected. Variants of pandemic CC8-MRSA-[IVa + ACME I] (PVL+) USA300 were detected and majority of CC772 strains were CC772-MRSA-V (PVL+), “Bengal- Bay Clone”. Novel MRSA strains identified include CC5-MRSA-V (edinA+), CC5-MRSA-[VT + fusC], CC5-MRSA-IVa (tst1+), CC5-MRSA-[V/VT + cas + fusC + ccrA/B-1], CC8-MRSA-V/VT, CC22-MRSA-[IV + fusC + ccrAA/(C)], CC45-MRSA-[IV + fusC + tir], CC80-MRSA-IVa, CC121-MRSA-V/VT, CC152-MRSA-[V + fusC] (PVL+). Although several strains harboured SCC-borne fusidic acid resistance (fusC) (n = 181), erythromycin/clindamycin resistance (ermC) (n = 132) and gentamicin resistance (aacA-aphD) (n = 179) genes, none harboured vancomycin resistance genes while mupirocin resistance gene mupR (n = 2) and cfr gene (n = 1) were rare. An extensive MRSA repertoire including CCs previously unreported in the region and novel strains which probably arose locally suggest an evolving MRSA landscape. © 2020, The Author(s).

Loading...
Thumbnail Image
Item

Characterisation of a novel composite SCCmec-SCCfus element in an emerging Staphylococcus aureus strain from the Arabian Gulf region

2019, Senok, Abiola, Slickers, Peter, Hotzel, Helmut, Boswihi, Samar, Braun, Sascha D., Gawlik, Darius, Müller, Elke, Nabi, Anju, Nassar, Rania, Nitschke, Hedda, Reißig, Annett, Ruppelt-Lorz, Antje, Mafofo, Joseph, Somili, Ali M., Udo, Edet, Ehricht, Ralf, Monecke, Stefan

Fusidic acid is a steroid antibiotic known since the 1960s. It is frequently used in topical preparations, i.e., ointments, for the treatment of skin and soft tissue infections caused by Staphylococcus aureus. There is an increasing number of methicillin-resistant S. aureus (MRSA) strains that harbour plasmid-borne fusB/far1 or fusC that is localised on SCC elements. In this study we examined a series of related CC30-MRSA isolates from the Arabian Gulf countries that presented with SCCmec elements and fusC, including a variant that—to the best of our knowledge—has not yet formally been described. It consisted of a class B mec complex and ccrA/B-4 genes. The fusidic acid resistance gene fusC was present, but contrary to the previously sequenced element of HDE288, it was not accompanied by tirS. This element was identified in CC30 MRSA from Kuwait, Saudi Arabia and the United Arab Emirates that usually also harbour the Panton-Valentin leukocidin (PVL) genes. It was also identified in CC8 and ST834 isolates. In addition, further CC30 MRSA strains with other SCCmec VI elements harbouring fusC were found to circulate in the Arabian Gulf region. It can be assumed that MRSA strains with SCCmec elements that include fusC have a selective advantage in both hospital and community settings warranting a review of the use of topical antibiotics and indicating the necessity of reducing over-the-counter sale of antibiotics, including fusidic acid, without prescription.Fusidic acid is a steroid antibiotic known since the 1960s. It is frequently used in topical preparations, i.e., ointments, for the treatment of skin and soft tissue infections caused by Staphylococcus aureus. There is an increasing number of methicillin-resistant S. aureus (MRSA) strains that harbour plasmid-borne fusB/far1 or fusC that is localised on SCC elements. In this study we examined a series of related CC30-MRSA isolates from the Arabian Gulf countries that presented with SCCmec elements and fusC, including a variant that—to the best of our knowledge—has not yet formally been described. It consisted of a class B mec complex and ccrA/B-4 genes. The fusidic acid resistance gene fusC was present, but contrary to the previously sequenced element of HDE288, it was not accompanied by tirS. This element was identified in CC30 MRSA from Kuwait, Saudi Arabia and the United Arab Emirates that usually also harbour the Panton-Valentin leukocidin (PVL) genes. It was also identified in CC8 and ST834 isolates. In addition, further CC30 MRSA strains with other SCCmec VI elements harbouring fusC were found to circulate in the Arabian Gulf region. It can be assumed that MRSA strains with SCCmec elements that include fusC have a selective advantage in both hospital and community settings warranting a review of the use of topical antibiotics and indicating the necessity of reducing over-the-counter sale of antibiotics, including fusidic acid, without prescription.

Loading...
Thumbnail Image
Item

Long-Term Sinonasal Carriage of Staphylococcus aureus and Anti-Staphylococcal Humoral Immune Response in Patients with Chronic Rhinosinusitis

2021, Thunberg, Ulrica, Hugosson, Svante, Ehricht, Ralf, Monecke, Stefan, Müller, Elke, Cao, Yang, Stegger, Marc, Söderquist, Bo

We investigated Staphylococcus aureus diversity, genetic factors, and humoral immune responses against antigens via genome analysis of S. aureus isolates from chronic rhinosinusitis (CRS) patients in a long-term follow-up. Of the 42 patients who provided S. aureus isolates and serum for a previous study, 34 could be included for follow-up after a decade. Clinical examinations were performed and bacterial samples were collected from the maxillary sinus and nares. S. aureus isolates were characterized by whole-genome sequencing, and specific anti-staphylococcal IgG in serum was determined using protein arrays. S. aureus was detected in the nares and/or maxillary sinus at both initial inclusion and follow-up in 15 of the 34 respondents (44%). Three of these (20%) had S. aureus isolates from the same genetic lineage as at inclusion. A low number of single-nucleotide polymorphisms (SNPs) were identified when comparing isolates from nares and maxillary sinus collected at the same time point. The overall change of antibody responses to staphylococcal antigens over time showed great variability, and no correlation was found between the presence of genes encoding antigens and the corresponding anti-staphylococcal IgG in serum; thus our findings did not support a role, in CRS, of the specific S. aureus antigens investigated.

Loading...
Thumbnail Image
Item

Protein Microarray-Guided Development of a Highly Sensitive and Specific Dipstick Assay for Glanders Serodiagnostics

2022, Wagner, Gabriel E., Berner, Andreas, Lipp, Michaela, Kohler, Christian, Assig, Karoline, Lichtenegger, Sabine, Saqib, Muhammad, Müller, Elke, Trinh, Trung T., Gad, Anne-Marie, Söffing, Hans Hermann, Ehricht, Ralf, Laroucau, Karine, Steinmetz, Ivo

Burkholderia mallei, the causative agent of glanders, is a clonal descendant of Burkholderia pseudomallei, the causative agent of melioidosis, which has lost its environmental reservoir and has a restricted host range. Despite limitations in terms of sensitivity and specificity, complement fixation is still the official diagnostic test for glanders. Therefore, new tools are needed for diagnostics and to study the B. mallei epidemiology. We recently developed a highly sensitive serodiagnostic microarray test for human melioidosis based on the multiplex detection of B. pseudomallei proteins. In this study, we modified our array tests by using anti-horse IgG conjugate and tested sera from B. mallei-infected horses (n = 30), negative controls (n = 39), and horses infected with other pathogens (n = 14). Our array results show a sensitivity of 96.7% (confidence interval [CI] 85.5 to 99.6%) and a specificity of 100.0% (CI, 95.4 to 100.0%). The reactivity pattern of the positive sera on our array test allowed us to identify a set of 12 highly reactive proteins of interest for glanders diagnosis. The B. mallei variants of the three best protein candidates were selected for the development of a novel dipstick assay. Our point-of-care test detected glanders cases in less than 15 min with a sensitivity of 90.0% (CI, 75.7 to 97.1%) and a specificity of 100.0% (CI, 95.4 to 100.0%). The microarray and dipstick can easily be adopted for the diagnosis of both B. mallei and B. pseudomallei infections in different animals. Future studies will show whether multiplex serological testing has the potential to differentiate between these pathogens.

Loading...
Thumbnail Image
Item

Molecular investigations on a chimeric strain of Staphylococcus aureus sequence type 80

2020, Gawlik, Darius, Ruppelt-Lorz, Antje, Müller, Elke, Reißig, Annett, Hotzel, Helmut, Braun, Sascha D., Söderquist, Bo, Ziegler-Cordts, Albrecht, Stein, Claudia, Pletz, Mathias W., Ehricht, Ralf, Monecke, Stefan

A PVL-positive, methicillin-susceptible Staphylococcus aureus was cultured from pus from cervical lymphadenitis of a patient of East-African origin. Microarray hybridisation assigned the isolate to clonal complex (CC) 80 but revealed unusual features, including the presence of the ORF-CM14 enterotoxin homologue and of an ACME-III element as well as the absence of etD and edinB. The isolate was subjected to both, Illumina and Nanopore sequencing allowing characterisation of deviating regions within the strain´s genome. Atypical features of this strain were attributable to the presence of two genomic regions that originated from other S. aureus lineages and that comprised, respectively, 3% and 1.4% of the genome. One deviating region extended from walJ to sirB. It comprised ORF-CM14 and the ACME-III element. A homologous but larger fragment was also found in an atypical S. aureus CC1/ST567 strain whose lineage might have served as donor of this genomic region. This region itself is a chimera comprising fragments from CC1 as well as fragments of unknown origin. The other deviating region comprised the region from htsB to ecfA2, i.e., another 3% of the genome. It was very similar to CC1 sequences. Either this suggests an incorporation of CC1 DNA into the study strain, or alternatively a recombination event affecting “canonical” CC80. Thus, the study strain bears witness of several recombination events affecting supposedly core genomic genes. Although the exact mechanism is not yet clear, such chimerism seems to be an additional pathway in the evolution of S. aureus. This could facilitate also a transmission of virulence and resistance factors and therefore offer an additional evolutionary advantage.

Loading...
Thumbnail Image
Item

Phylodynamic signatures in the emergence of community-associated MRSA

2022, Steinig, Eike, Aglua, Izzard, Duchene, Sebastian, Meehan, Michael T., Yoannes, Mition, Firth, Cadhla, Jaworski, Jan, Drekore, Jimmy, Urakoko, Bohu, Poka, Harry, Wurr, Clive, Ebos, Eri, Nangen, David, Müller, Elke, Mulvey, Peter, Jackson, Charlene, Blomfeldt, Anita, Aamot, Hege Vangstein, Laman, Moses, Manning, Laurens, Earls, Megan, Coleman, David C., Greenhill, Andrew, Ford, Rebecca, Stegger, Marc, Syed, Muhammad Ali, Jamil, Bushra, Monecke, Stefan, Ehricht, Ralf, Smith, Simon, Pomat, William, Horwood, Paul, Tong, Steven Y. C., McBryde, Emma

Community-associated, methicillin-resistant Staphylococcus aureus (MRSA) lineages have emerged in many geographically distinct regions around the world during the past 30 y. Here, we apply consistent phylodynamic methods across multiple community-associated MRSA lineages to describe and contrast their patterns of emergence and dissemination. We generated whole-genome sequencing data for the Australian sequence type (ST) ST93-MRSA-IV from remote communities in Far North Queensland and Papua New Guinea, and the Bengal Bay ST772-MRSA-V clone from metropolitan communities in Pakistan. Increases in the effective reproduction number (Re) and sustained transmission (Re > 1) coincided with spread of progenitor methicillin-susceptible S. aureus (MSSA) in remote northern Australian populations, dissemination of the ST93-MRSA-IV genotype into population centers on the Australian East Coast, and subsequent importation into the highlands of Papua New Guinea and Far North Queensland. Applying the same phylodynamic methods to existing lineage datasets, we identified common signatures of epidemic growth in the emergence and epidemiological trajectory of community-associated S. aureus lineages from America, Asia, Australasia, and Europe. Surges in Re were observed at the divergence of antibiotic-resistant strains, coinciding with their establishment in regional population centers. Epidemic growth was also observed among drug-resistant MSSA clades in Africa and northern Australia. Our data suggest that the emergence of community-associated MRSA in the late 20th century was driven by a combination of antibiotic-resistant genotypes and host epidemiology, leading to abrupt changes in lineage-wide transmission dynamics and sustained transmission in regional population centers.

Loading...
Thumbnail Image
Item

Sequence Analysis of Novel Staphylococcus aureus Lineages from Wild and Captive Macaques

2022, Monecke, Stefan, Roberts, Marilyn C., Braun, Sascha D., Diezel, Celia, Müller, Elke, Reinicke, Martin, Linde, Jörg, Joshi, Prabhu Raj, Paudel, Saroj, Acharya, Mahesh, Chalise, Mukesh K., Feßler, Andrea T., Hotzel, Helmut, Khanal, Laxman, Koju, Narayan P., Schwarz, Stefan, Kyes, Randall C., Ehricht, Ralf

Staphylococcus aureus is a widespread and common opportunistic bacterium that can colonise or infect humans as well as a wide range of animals. There are a few studies of both methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) isolated from monkeys, apes, and lemurs, indicating a presence of a number of poorly or unknown lineages of the pathogen. In order to obtain insight into staphylococcal diversity, we sequenced strains from wild and captive individuals of three macaque species (Macaca mulatta, M. assamensis, and M. sylvanus) using Nanopore and Illumina technologies. These strains were previously identified by microarray as poorly or unknown strains. Isolates of novel lineages ST4168, ST7687, ST7688, ST7689, ST7690, ST7691, ST7692, ST7693, ST7694, ST7695, ST7745, ST7746, ST7747, ST7748, ST7749, ST7750, ST7751, ST7752, ST7753, and ST7754 were sequenced and characterised for the first time. In addition, isolates belonging to ST2990, a lineage also observed in humans, and ST3268, a MRSA strain already known from macaques, were also included into the study. Mobile genetic elements, genomic islands, and carriage of prophages were analysed. There was no evidence for novel host-specific virulence factors. However, a conspicuously high rate of carriage of a pathogenicity island harbouring edinB and etD2/etE as well as a higher number of repeat units within the gene sasG (encoding an adhesion factor) than in human isolates were observed. None of the strains harboured the genes encoding Panton–Valentine leukocidin. In conclusion, wildlife including macaques may harbour an unappreciated diversity of S. aureus lineages that may be of clinical relevance for humans, livestock, or for wildlife conservation, given the declining state of many wildlife populations.

Loading...
Thumbnail Image
Item

Shared MRSA Strains among Nepalese Rhesus macaques (Macaca mulatta), their Environment and Hospitalized Patients

2019, Roberts, Marilyn C., Joshi, Prabhu Raj, Monecke, Stefan, Ehricht, Ralf, Müller, Elke, Gawlik, Darius, Paudel, Saroj, Acharya, Mahesh, Bhattarai, Sankalpa, Pokharel, Sujana, Tuladhar, Reshma, Chalise, Mukesh K., Kyes, Randall C.

This study looked at 227 saliva samples from Rhesus macaques (Macaca mulatta) and 218 samples from the surrounding environments. From these samples, MRSA isolates were collected from Rhesus saliva samples (n = 13) and environmental samples (n = 19) near temple areas in Kathmandu, Nepal. For comparison, selected MRSA isolates (n = 5) were obtained from patients with wound infections from a Kathmandu hospital. All isolates were characterized using Abbott StaphyType® DNA microarrays. Eighteen isolates (62%) from monkeys (n = 4; 31%) and environmental samples (n = 14; 74%), were CC22-MRSA-IV. Most (n = 16) of them carried both, the PVL locus and toxic shock toxin gene (tst1), an unusual combination which is the same as in previously characterized strain from Nepalese macaques and pigs. The five human isolates also belonged to that strain type. Eight monkey MRSA isolates were CC361-MRSA-IV. One MRSA from a monkey and one from an environmental sample, were CC88-MRSA-V. Other environmental MRSA included one each, CC121-MRSA-VT, and CC772 -MRSA-V. Two were CC779-MRSA-VT, potentially a novel clone. All MRSA carried the blaZ gene. The aacA–aphD, dfrA, and erm (C) genes were very common in isolates from all sources. One macaque MRSA carried the resistance genes aphA3 and sat, neither previously identified in primate MRSA isolates. This current study suggests that humans could be a potential source of the MRSA in the macaques/environment and transmission may be linked to humans feeding the primates and/or living in close proximity to each other.This study looked at 227 saliva samples from Rhesus macaques (Macaca mulatta) and 218 samples from the surrounding environments. From these samples, MRSA isolates were collected from Rhesus saliva samples (n = 13) and environmental samples (n = 19) near temple areas in Kathmandu, Nepal. For comparison, selected MRSA isolates (n = 5) were obtained from patients with wound infections from a Kathmandu hospital. All isolates were characterized using Abbott StaphyType® DNA microarrays. Eighteen isolates (62%) from monkeys (n = 4; 31%) and environmental samples (n = 14; 74%), were CC22-MRSA-IV. Most (n = 16) of them carried both, the PVL locus and toxic shock toxin gene (tst1), an unusual combination which is the same as in previously characterized strain from Nepalese macaques and pigs. The five human isolates also belonged to that strain type. Eight monkey MRSA isolates were CC361-MRSA-IV. One MRSA from a monkey and one from an environmental sample, were CC88-MRSA-V. Other environmental MRSA included one each, CC121-MRSA-VT, and CC772 -MRSA-V. Two were CC779-MRSA-VT, potentially a novel clone. All MRSA carried the blaZ gene. The aacA–aphD, dfrA, and erm (C) genes were very common in isolates from all sources. One macaque MRSA carried the resistance genes aphA3 and sat, neither previously identified in primate MRSA isolates. This current study suggests that humans could be a potential source of the MRSA in the macaques/environment and transmission may be linked to humans feeding the primates and/or living in close proximity to each other.

Loading...
Thumbnail Image
Item

Presence of β-Lactamase-producing Enterobacterales and Salmonella Isolates in Marine Mammals

2021, Grünzweil, Olivia M., Palmer, Lauren, Cabal, Adriana, Szostak, Michael P., Ruppitsch, Werner, Kornschober, Christian, Korus, Maciej, Misic, Dusan, Bernreiter-Hofer, Tanja, Korath, Anna D. J., Feßler, Andrea T., Allerberger, Franz, Schwarz, Stefan, Spergser, Joachim, Müller, Elke, Braun, Sascha D., Monecke, Stefan, Ehricht, Ralf, Walzer, Chris, Smodlaka, Hrvoje, Loncaric, Igor

Marine mammals have been described as sentinels of the health of marine ecosystems. Therefore, the aim of this study was to investigate (i) the presence of extended-spectrum β-lactamase (ESBL)- and AmpC-producing Enterobacterales, which comprise several bacterial families important to the healthcare sector, as well as (ii) the presence of Salmonella in these coastal animals. The antimicrobial resistance pheno- and genotypes, as well as biocide susceptibility of Enterobacterales isolated from stranded marine mammals, were determined prior to their rehabilitation. All E. coli isolates (n = 27) were screened for virulence genes via DNA-based microarray, and twelve selected E. coli isolates were analyzed by whole-genome sequencing. Seventy-one percent of the Enterobacterales isolates exhibited a multidrug-resistant (MDR) pheno- and genotype. The gene blaCMY (n = 51) was the predominant β-lactamase gene. In addition, blaTEM-1 (n = 38), blaSHV-33 (n = 8), blaCTX-M-15 (n = 7), blaOXA-1 (n = 7), blaSHV-11 (n = 3), and blaDHA-1 (n = 2) were detected. The most prevalent non-β-lactamase genes were sul2 (n = 38), strA (n = 34), strB (n = 34), and tet(A) (n = 34). Escherichia coli isolates belonging to the pandemic sequence types (STs) ST38, ST167, and ST648 were identified. Among Salmonella isolates (n = 18), S. Havana was the most prevalent serotype. The present study revealed a high prevalence of MDR bacteria and the presence of pandemic high-risk clones, both of which are indicators of anthropogenic antimicrobial pollution, in marine mammals.

Loading...
Thumbnail Image
Item

Characterisation of Methicillin-Resistant Staphylococcus aureus from Alexandria, Egypt

2023, Monecke, Stefan, Bedewy, Amira K., Müller, Elke, Braun, Sascha D., Diezel, Celia, Elsheredy, Amel, Kader, Ola, Reinicke, Martin, Ghazal, Abeer, Rezk, Shahinda, Ehricht, Ralf

The present study aims to characterise clinical MRSA isolates from a tertiary care centre in Egypt’s second-largest city, Alexandria. Thirty isolates collected in 2020 were genotypically characterised by microarray to detect their resistance and virulence genes and assign them to clonal complexes (CC) and strains. Isolates belonged to 11 different CCs and 14 different strains. CC15-MRSA-[V+fus] (n = 6), CC1-MRSA-[V+fus+tir+ccrA/B-1] (PVL+) (n = 5) as well as CC1-MRSA-[V+fus+tir+ccrA/B-1] and CC1153-MRSA-[V+fus] (PVL+) (both with n = 3) were the most common strains. Most isolates (83%) harboured variant or composite SCCmec V or VI elements that included the fusidic acid resistance gene fusC. The SCCmec [V+fus+tir+ccrA/B-1] element of one of the CC1 isolates was sequenced, revealing a presence not only of fusC but also of blaZ, aacA-aphD and other resistance genes. PVL genes were also common (40%). The hospital-acquired MRSA CC239-III strain was only found twice. A comparison to data from a study on strains collected in 2015 (Montelongo et al., 2022) showed an increase in fusC and PVL carriage and a decreasing prevalence of the CC239 strain. These observations indicate a diffusion of community-acquired strains into hospital settings. The beta-lactam use in hospitals and the widespread fusidic acid consumption in the community might pose a selective pressure that favours MRSA strains with composite SCCmec elements comprising mecA and fusC. This is an unsettling trend, but more MRSA typing data from Egypt are required.