Search Results

Now showing 1 - 5 of 5
  • Item
    ConsensusPrime—A Bioinformatic Pipeline for Ideal Consensus Primer Design
    (Basel : MDPI, 2022) Collatz, Maximilian; Braun, Sascha D.; Monecke, Stefan; Ehricht, Ralf
    Background: High-quality oligonucleotides for molecular amplification and detection procedures of diverse target sequences depend on sequence homology. Processing input sequences and identifying homogeneous regions in alignments can be carried out by hand only if they are small and contain sequences of high similarity. Finding the best regions for large and inhomogeneous alignments needs to be automated. Results: The ConsensusPrime pipeline was developed to sort out redundant and technical interfering data in multiple sequence alignments and detect the most homologous regions from multiple sequences. It automates the prediction of optimal consensus primers for molecular analytical and sequence-based procedures/assays. Conclusion: ConsensusPrime is a fast and easy-to-use pipeline for predicting optimal consensus primers that is executable on local systems without depending on external resources and web services. An implementation in a Docker image ensures platform-independent executability and installability despite the combination of multiple programs. The source code and installation instructions are publicly available on GitHub.
  • Item
    Characterization of PVL-Positive MRSA Isolates in Northern Bavaria, Germany over an Eight-Year Period
    (Basel : MDPI, 2022) Szumlanski, Tobias; Neumann, Bernd; Bertram, Ralph; Simbeck, Alexandra; Ziegler, Renate; Monecke, Stefan; Ehricht, Ralf; Schneider-Brachert, Wulf; Steinmann, Joerg
    Purpose: Community-acquired methicillin-resistant Staphylococcus aureus strains (CA-MRSA) are spread worldwide and often cause recurring and persistent infections in humans. CA-MRSA strains frequently carry Panton–Valentine leukocidin (PVL) as a distinctive virulence factor. This study investigates the molecular epidemiology, antibiotic resistance and clinical characteristics of PVL-positive MRSA strains in Northern Bavaria, Germany, isolated over an eight-year period. Methods: Strains were identified by MALDI-TOF MS and antibiotic susceptibility was tested by automated microdilution (VITEK 2) or disk diffusion. PVL-encoding genes and mecA were detected by PCR. MRSA clonal complexes (CC) and lineages were assigned by genotyping via DNA microarray and spa-typing. Results: In total, 131 PVL-positive MRSA were collected from five hospital sites between 2009 and 2016. Predominant lineages were CC8-MRSA-[IV+ACME], USA300 (27/131; 20.6%); CC30-MRSA-IV, Southwest Pacific Clone (26/131; 19.8%) and CC80-MRSA-IV (25/131; 19.1%). Other CCs were detected less frequently. Resistance against erythromycin and clindamycin was prevalent, whereas all strains were sensitive towards vancomycin and linezolid. In total, 100 cases (76.3%) were causally linked to an infection. The majority (102/131; 77.9%) of isolates were detected in skin swabs or swabs from surgical sites. Conclusions: During the sample period we found an increase in the PVL-positive MRSA lineages CC30 and CC1. Compared to less-abundant lineages CC1 or CC22, the predominant lineages CC8, CC30 and CC80 harbored a broader resistance spectrum. Furthermore, these lineages are probably associated with a travel and migration background. In the spatio-temporal setting we investigated, these were arguably drivers of diversification and change in the landscape of PVL-positive MRSA.
  • Item
    Phenotypic and Molecular Detection of Biofilm Formation in Staphylococcus aureus Isolated from Different Sources in Algeria
    (Basel : MDPI, 2020) Achek, Rachid; Hotzel, Helmut; Nabi, Ibrahim; Kechida, Souad; Mami, Djamila; Didouh, Nassima; Tomaso, Herbert; Neubauer, Heinrich; Ehricht, Ralf; Monecke, Stefan; El-Adawy, Hosny
    Staphylococcus aureus is an opportunistic bacterium causing a wide variety of diseases. Biofilm formation of Staphylococcus aureus is of primary public and animal health concern. The purposes of the present study were to investigate the ability of Staphylococcus aureus isolated from animals, humans, and food samples to form biofilms and to screen for the presence of biofilmassociated and regulatory genes. In total, 55 Staphylococcus aureus isolated from sheep mastitis cases (n = 28), humans (n = 19), and from food matrices (n = 8) were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The ability of Staphylococcus aureus for slime production and biofilm formation was determined quantitatively. A DNA microarray examination was performed to detect adhesion genes (icaACD and biofilmassociated protein gene (bap)), genes encoding microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), regulatory genes (accessory gene regulator (agr) and staphylococcal accessory regulator (sarA)), and the staphylococcal cassette chromosome mec elements (SCCmec). Out of 55 Staphylococcus aureus isolates, 39 (71.0%) and 23 (41.8%) were producing slime and biofilm, respectively. All Staphylococcus aureus strains isolated from food showed biofilm formation ability. 52.6% of the Staphylococcus aureus strains isolated from sheep with mastitis, and 17.9% of isolates from humans, were able to form a biofilm. Microarray analysis typed the Staphylococcus aureus into 15 clonal complexes. Among all Staphylococcus aureus isolates, four of the human isolates (21.1%) harbored the mecA gene (SCCmec type IV) typed into 2 clonal complexes (CC22-MRSA-IV and CC80-MRSA-IV) and were considered as methicillin-resistant, while two of them were slime-producing. None of the isolates from sheep with mastitis harbored the cna gene which is associated with biofilm production. The fnbB gene was found in 100%, 60% and 40% of biofilm-producing Staphylococcus aureus isolated from food, humans, and sheep with mastitis, respectively. Three agr groups were present and agr group III was predominant with 43.6%, followed by agr group I (38.2%), and agr group II (18.2%). This study revealed the capacity of Staphylococcus aureus isolates to form biofilms and highlighted the genetic background displayed by Staphylococcus aureus isolates from different sources in Algeria. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    The Pheno- and Genotypic Characterization of Porcine Escherichia coli Isolates
    (Basel : MDPI, 2021) Bernreiter-Hofer, Tanja; Schwarz, Lukas; Müller, Elke; Cabal-Rosel, Adriana; Korus, Maciej; Misic, Dusan; Frankenfeld, Katrin; Abraham, Kerstin; Grünzweil, Olivia; Weiss, Astrid; Feßler, Andrea T.; Allerberger, Franz; Schwarz, Stefan; Szostak, Michael P.; Ruppitsch, Werner; Ladinig, Andrea; Spergser, Joachim; Braun, Sascha D.; Monecke, Stefan; Ehricht, Ralf; Loncaric, Igor
    Escherichia (E.) coli is the main causative pathogen of neonatal and post-weaning diarrhea and edema disease in swine production. There is a significant health concern due to an increasing number of human infections associated with food and/or environmental-borne pathogenic and multidrug-resistant E. coli worldwide. Monitoring the presence of pathogenic and antimicrobial-resistant E. coli isolates is essential for sustainable disease management in livestock and human medicine. A total of 102 E. coli isolates of diseased pigs were characterized by antimicrobial and biocide susceptibility testing. Antimicrobial resistance genes, including mobile colistin resistance genes, were analyzed by PCR and DNA sequencing. The quinolone resistance-determining regions of gyrA and parC in ciprofloxacin-resistant isolates were analyzed. Clonal relatedness was investigated by two-locus sequence typing (CH clonotyping). Phylotyping was performed by the Clermont multiplex PCR method. Virulence determinants were analyzed by customized DNA-based microarray technology developed in this study for fast and economic molecular multiplex typing. Thirty-five isolates were selected for whole-genome sequence-based analysis. Most isolates were resistant to ampicillin and tetracycline. Twenty-one isolates displayed an ESBL phenotype and one isolate an AmpC β-lactamase-producing phenotype. Three isolates had elevated colistin minimal inhibitory concentrations and carried the mcr-1 gene. Thirty-seven isolates displayed a multi-drug resistance phenotype. The most predominant β-lactamase gene classes were blaTEM-1 (56%) and blaCTX-M-1 (13.71%). Mutations in QRDR were observed in 14 ciprofloxacin-resistant isolates. CH clonotyping divided all isolates into 51 CH clonotypes. The majority of isolates belonged to phylogroup A. Sixty-four isolates could be assigned to defined pathotypes wherefrom UPEC was predominant. WGS revealed that the most predominant sequence type was ST100, followed by ST10. ST131 was detected twice in our analysis. This study highlights the importance of monitoring antimicrobial resistance and virulence properties of porcine E. coli isolates. This can be achieved by applying reliable, fast, economic and easy to perform technologies such as DNA-based microarray typing. The presence of high-risk pathogenic multi-drug resistant zoonotic clones, as well as those that are resistant to critically important antibiotics for humans, can pose a risk to public health. Improved protocols may be developed in swine farms for preventing infections, as well as the maintenance and distribution of the causative isolates.
  • Item
    Long-Term Sinonasal Carriage of Staphylococcus aureus and Anti-Staphylococcal Humoral Immune Response in Patients with Chronic Rhinosinusitis
    (Basel : MDPI, 2021) Thunberg, Ulrica; Hugosson, Svante; Ehricht, Ralf; Monecke, Stefan; Müller, Elke; Cao, Yang; Stegger, Marc; Söderquist, Bo
    We investigated Staphylococcus aureus diversity, genetic factors, and humoral immune responses against antigens via genome analysis of S. aureus isolates from chronic rhinosinusitis (CRS) patients in a long-term follow-up. Of the 42 patients who provided S. aureus isolates and serum for a previous study, 34 could be included for follow-up after a decade. Clinical examinations were performed and bacterial samples were collected from the maxillary sinus and nares. S. aureus isolates were characterized by whole-genome sequencing, and specific anti-staphylococcal IgG in serum was determined using protein arrays. S. aureus was detected in the nares and/or maxillary sinus at both initial inclusion and follow-up in 15 of the 34 respondents (44%). Three of these (20%) had S. aureus isolates from the same genetic lineage as at inclusion. A low number of single-nucleotide polymorphisms (SNPs) were identified when comparing isolates from nares and maxillary sinus collected at the same time point. The overall change of antibody responses to staphylococcal antigens over time showed great variability, and no correlation was found between the presence of genes encoding antigens and the corresponding anti-staphylococcal IgG in serum; thus our findings did not support a role, in CRS, of the specific S. aureus antigens investigated.