Search Results

Now showing 1 - 6 of 6
  • Item
    Case study of a humidity layer above Arctic stratocumulus and potential turbulent coupling with the cloud top
    (Katlenburg-Lindau : European Geosciences Union, 2021) Egerer, Ulrike; Ehrlich, André; Gottschalk, Matthias; Griesche, Hannes; Neggers, Roel A.J.; Siebert, Holger; Wendisch, Manfred
    Specific humidity inversions (SHIs) above low-level cloud layers have been frequently observed in the Arctic. The formation of these SHIs is usually associated with large-scale advection of humid air masses. However, the potential coupling of SHIs with cloud layers by turbulent processes is not fully understood. In this study, we analyze a 3 d period of a persistent layer of increased specific humidity above a stratocumulus cloud observed during an Arctic field campaign in June 2017. The tethered balloon system BELUGA (Balloon-bornE moduLar Utility for profilinG the lower Atmosphere) recorded vertical profile data of meteorological, turbulence, and radiation parameters in the atmospheric boundary layer. An in-depth discussion of the problems associated with humidity measurements in cloudy environments leads to the conclusion that the observed SHIs do not result from measurement artifacts. We analyze two different scenarios for the SHI in relation to the cloud top capped by a temperature inversion: (i) the SHI coincides with the cloud top, and (ii) the SHI is vertically separated from the lowered cloud top. In the first case, the SHI and the cloud layer are coupled by turbulence that extends over the cloud top and connects the two layers by turbulent mixing. Several profiles reveal downward virtual sensible and latent heat fluxes at the cloud top, indicating entrainment of humid air supplied by the SHI into the cloud layer. For the second case, a downward moisture transport at the base of the SHI and an upward moisture flux at the cloud top is observed. Therefore, the area between the cloud top and SHI is supplied with moisture from both sides. Finally, large-eddy simulations (LESs) complement the observations by modeling a case of the first scenario. The simulations reproduce the observed downward turbulent fluxes of heat and moisture at the cloud top. The LES realizations suggest that in the presence of a SHI, the cloud layer remains thicker and the temperature inversion height is elevated.
  • Item
    Combining atmospheric and snow radiative transfer models to assess the solar radiative effects of black carbon in the Arctic
    (Katlenburg-Lindau : EGU, 2020) Donth, Tobias; Jäkel, Evelyn; Ehrlich, André; Heinold, Bernd; Schacht, Jacob; Herber, Andreas; Zanatta, Marco; Wendisch, Manfred
    The magnitude of solar radiative effects (cooling or warming) of black carbon (BC) particles embedded in the Arctic atmosphere and surface snow layer was explored on the basis of case studies. For this purpose, combined atmospheric and snow radiative transfer simulations were performed for cloudless and cloudy conditions on the basis of BC mass concentrations measured in pristine early summer and more polluted early spring conditions. The area of interest is the remote sea-ice-covered Arctic Ocean in the vicinity of Spitsbergen, northern Greenland, and northern Alaska typically not affected by local pollution. To account for the radiative interactions between the black-carbon-containing snow surface layer and the atmosphere, an atmospheric and snow radiative transfer model were coupled iteratively. For pristine summer conditions (no atmospheric BC, minimum solar zenith angles of 55 ) and a representative BC particle mass concentration of 5 ng g-1 in the surface snow layer, a positive daily mean solar radiative forcing of +0.2 W m-2 was calculated for the surface radiative budget. A higher load of atmospheric BC representing early springtime conditions results in a slightly negative mean radiative forcing at the surface of about -0.05 W m-2, even when the low BC mass concentration measured in the pristine early summer conditions was embedded in the surface snow layer. The total net surface radiative forcing combining the effects of BC embedded in the atmosphere and in the snow layer strongly depends on the snow optical properties (snow specific surface area and snow density). For the conditions over the Arctic Ocean analyzed in the simulations, it was found that the atmospheric heating rate by water vapor or clouds is 1 to 2 orders of magnitude larger than that by atmospheric BC. Similarly, the daily mean total heating rate (6 K d-1) within a snowpack due to absorption by the ice was more than 1 order of magnitude larger than that of atmospheric BC (0.2 K d-1). Also, it was shown that the cooling by atmospheric BC of the near-surface air and the warming effect by BC embedded in snow are reduced in the presence of clouds. © 2020 Copernicus GmbH. All rights reserved.
  • Item
    Meteorological conditions during the ACLOUD/PASCAL field campaign near Svalbard in early summer 2017
    (Katlenburg-Lindau : EGU, 2018) Knudsen, Erlend M.; Heinold, Bernd; Dahlke, Sandro; Bozem, Heiko; Crewell, Susanne; Gorodetskaya, Irina V.; Heygster, Georg; Kunkel, Daniel; Maturilli, Marion; Mech, Mario; Viceto, Carolina; Rinke, Annette; Schmithüsen, Holger; Ehrlich, André; Macke, Andreas; Lüpkes, Christof; Wendisch, Manfred
    The two concerted field campaigns, Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) and the Physical feedbacks of Arctic planetary boundary level Sea ice, Cloud and AerosoL (PASCAL), took place near Svalbard from 23 May to 26 June 2017. They were focused on studying Arctic mixed-phase clouds and involved observations from two airplanes (ACLOUD), an icebreaker (PASCAL) and a tethered balloon, as well as ground-based stations. Here, we present the synoptic development during the
  • Item
    EUREC4A
    (Katlenburg-Lindau : Copernics Publications, 2021) Stevens, Bjorn; Bony, Sandrine; Farrell, David; Ament, Felix; Blyth, Alan; Fairall, Christopher; Karstensen, Johannes; Quinn, Patricia K.; Speich, Sabrina; Acquistapace, Claudia; Aemisegger, Franziska; Crewell, Susanne; Cronin, Timothy; Cui, Zhiqiang; Cuypers, Yannis; Daley, Alton; Damerell, Gillian M.; Dauhut, Thibaut; Deneke, Hartwig; Desbios, Jean-Philippe; Dörner, Steffen; Albright, Anna Lea; Donner, Sebastian; Douet, Vincent; Drushka, Kyla; Dütsch, Marina; Ehrlich, André; Emanuel, Kerry; Emmanouilidis, Alexandros; Etienne, Jean-Claude; Etienne-Leblanc, Sheryl; Faure, Ghislain; Bellenger, Hugo; Feingold, Graham; Ferrero, Luca; Fix, Andreas; Flamant, Cyrille; Flatau, Piotr Jacek; Foltz, Gregory R.; Forster, Linda; Furtuna, Iulian; Gadian, Alan; Galewsky, Joseph; Bodenschatz, Eberhard; Gallagher, Martin; Gallimore, Peter; Gaston, Cassandra; Gentemann, Chelle; Geyskens, Nicolas; Giez, Andreas; Gollop, John; Gouirand, Isabelle; Gourbeyre, Christophe; de Graaf, Dörte; Caesar, Kathy-Ann; de Groot, Geiske E.; Grosz, Robert; Güttler, Johannes; Gutleben, Manuel; Hall, Kashawn; Harris, George; Helfer, Kevin C.; Henze, Dean; Herbert, Calvert; Holanda, Bruna; Chewitt-Lucas, Rebecca; Ibanez-Landeta, Antonio; Intrieri, Janet; Iyer, Suneil; Julien, Fabrice; Kalesse, Heike; Kazil, Jan; Kellman, Alexander; Kidane, Abiel T.; Kirchner, Ulrike; Klingebiel, Marcus; de Boer, Gijs; Körner, Mareike; Kremper, Leslie Ann; Kretzschmar, Jan; Krüger, Ovid; Kumala, Wojciech; Kurz, Armin; L'Hégaret, Pierre; Labaste, Matthieu; Lachlan-Cope, Tom; Laing, Arlene; Delanoë, Julien; Landschützer, Peter; Lang, Theresa; Lange, Diego; Lange, Ingo; Laplace, Clément; Lavik, Gauke; Laxenaire, Rémi; Le Bihan, Caroline; Leandro, Mason; Lefevre, Nathalie; Denby, Leif; Lena, Marius; Lenschow, Donald; Li, Qiang; Lloyd, Gary; Los, Sebastian; Losi, Niccolò; Lovell, Oscar; Luneau, Christopher; Makuch, Przemyslaw; Malinowski, Szymon; Ewald, Florian; Manta, Gaston; Marinou, Eleni; Marsden, Nicholas; Masson, Sebastien; Maury, Nicolas; Mayer, Bernhard; Mayers-Als, Margarette; Mazel, Christophe; McGeary, Wayne; McWilliams, James C.; Fildier, Benjamin; Mech, Mario; Mehlmann, Melina; Meroni, Agostino Niyonkuru; Mieslinger, Theresa; Minikin, Andreas; Minnett, Peter; Möller, Gregor; Morfa Avalos, Yanmichel; Muller, Caroline; Musat, Ionela; Forde, Marvin; Napoli, Anna; Neuberger, Almuth; Noisel, Christophe; Noone, David; Nordsiek, Freja; Nowak, Jakub L.; Oswald, Lothar; Parker, Douglas J.; Peck, Carolyn; Person, Renaud; George, Geet; Philippi, Miriam; Plueddemann, Albert; Pöhlker, Christopher; Pörtge, Veronika; Pöschl, Ulrich; Pologne, Lawrence; Posyniak, Michał; Prange, Marc; Quiñones Meléndez, Estefanía; Radtke, Jule; Gross, Silke; Ramage, Karim; Reimann, Jens; Renault, Lionel; Reus, Klaus; Reyes, Ashford; Ribbe, Joachim; Ringel, Maximilian; Ritschel, Markus; Rocha, Cesar B.; Rochetin, Nicolas; Hagen, Martin; Röttenbacher, Johannes; Rollo, Callum; Royer, Haley; Sadoulet, Pauline; Saffin, Leo; Sandiford, Sanola; Sandu, Irina; Schäfer, Michael; Schemann, Vera; Schirmacher, Imke; Hausold, Andrea; Schlenczek, Oliver; Schmidt, Jerome; Schröder, Marcel; Schwarzenboeck, Alfons; Sealy, Andrea; Senff, Christoph J.; Serikov, Ilya; Shohan, Samkeyat; Siddle, Elizabeth; Smirnov, Alexander; Heywood, Karen J.; Späth, Florian; Spooner, Branden; Stolla, M. Katharina; Szkółka, Wojciech; de Szoeke, Simon P.; Tarot, Stéphane; Tetoni, Eleni; Thompson, Elizabeth; Thomson, Jim; Tomassini, Lorenzo; Hirsch, Lutz; Totems, Julien; Ubele, Alma Anna; Villiger, Leonie; von Arx, Jan; Wagner, Thomas; Walther, Andi; Webber, Ben; Wendisch, Manfred; Whitehall, Shanice; Wiltshire, Anton; Jacob, Marek; Wing, Allison A.; Wirth, Martin; Wiskandt, Jonathan; Wolf, Kevin; Worbes, Ludwig; Wright, Ethan; Wulfmeyer, Volker; Young, Shanea; Zhang, Chidong; Zhang, Dongxiao; Jansen, Friedhelm; Ziemen, Florian; Zinner, Tobias; Zöger, Martin; Kinne, Stefan; Klocke, Daniel; Kölling, Tobias; Konow, Heike; Lothon, Marie; Mohr, Wiebke; Naumann, Ann Kristin; Nuijens, Louise; Olivier, Léa; Pincus, Robert; Pöhlker, Mira; Reverdin, Gilles; Roberts, Gregory; Schnitt, Sabrina; Schulz, Hauke; Siebesma, A. Pier; Stephan, Claudia Christine; Sullivan, Peter; Touzé-Peiffer, Ludovic; Vial, Jessica; Vogel, Raphaela; Zuidema, Paquita; Alexander, Nicola; Alves, Lyndon; Arixi, Sophian; Asmath, Hamish; Bagheri, Gholamhossein; Baier, Katharina; Bailey, Adriana; Baranowski, Dariusz; Baron, Alexandre; Barrau, Sébastien; Barrett, Paul A.; Batier, Frédéric; Behrendt, Andreas; Bendinger, Arne; Beucher, Florent; Bigorre, Sebastien; Blades, Edmund; Blossey, Peter; Bock, Olivier; Böing, Steven; Bosser, Pierre; Bourras, Denis; Bouruet-Aubertot, Pascale; Bower, Keith; Branellec, Pierre; Branger, Hubert; Brennek, Michal; Brewer, Alan; Brilouet, Pierre-Etienne; Brügmann, Björn; Buehler, Stefan A.; Burke, Elmo; Burton, Ralph; Calmer, Radiance; Canonici, Jean-Christophe; Carton, Xavier; Cato Jr., Gregory; Charles, Jude Andre; Chazette, Patrick; Chen, Yanxu; Chilinski, Michal T.; Choularton, Thomas; Chuang, Patrick; Clarke, Shamal; Coe, Hugh; Cornet, Céline; Coutris, Pierre; Couvreux, Fleur
    The science guiding the EUREC4A campaign and its measurements is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EUREC4A marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EUREC4A explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EUREC4A's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement.
  • Item
    A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign
    (Katlenburg-Lindau : Copernics Publications, 2019) Ehrlich, André; Wendisch, Manfred; Lüpkes, Christof; Buschmann, Matthias; Bozem, Heiko; Chechin, Dmitri; Clemen, Hans-Christian; Dupuy, Régis; Eppers, Olliver; Hartmann, Jörg; Herber, Andreas; Jäkel, Evelyn; Järvinen, Emma; Jourdan, Olivier; Kästner, Udo; Kliesch, Leif-Leonard; Köllner, Franziska; Mech, Mario; Mertes, Stephan; Neuber, Roland; Ruiz-Donoso, Elena; Schnaiter, Martin; Schneide, Johannes; Stapf, Johannes; Zanatta, Marco
    The Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign was carried out north-west of Svalbard (Norway) between 23 May and 6 June 2017. The objective of ACLOUD was to study Arctic boundary layer and mid-level clouds and their role in Arctic amplification. Two research aircraft (Polar 5 and 6) jointly performed 22 research flights over the transition zone between open ocean and closed sea ice. Both aircraft were equipped with identical instrumentation for measurements of basic meteorological parameters, as well as for turbulent and radiative energy fluxes. In addition, on Polar 5 active and passive remote sensing instruments were installed, while Polar 6 operated in situ instruments to characterize cloud and aerosol particles as well as trace gases. A detailed overview of the specifications, data processing, and data quality is provided here. It is shown that the scientific analysis of the ACLOUD data benefits from the coordinated operation of both aircraft. By combining the cloud remote sensing techniques operated on Polar 5, the synergy of multi-instrument cloud retrieval is illustrated. The remote sensing methods were validated using truly collocated in situ and remote sensing observations. The data of identical instruments operated on both aircraft were merged to extend the spatial coverage of mean atmospheric quantities and turbulent and radiative flux measurement. Therefore, the data set of the ACLOUD campaign provides comprehensive in situ and remote sensing observations characterizing the cloudy Arctic atmosphere. All processed, calibrated, and validated data are published in the World Data Center PANGAEA as instrument-separated data subsets (Ehrlich et al., 2019b, https://doi.org/10.1594/PANGAEA.902603).
  • Item
    The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multiplatform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification
    (Boston, Mass. : ASM, 2019) Wendisch, Manfred; Macke, Andreas; Ehrlich, André; Lüpkes, Christof; Mech, Mario; Chechin, Dmitry; Dethloff, Klaus; Velasco, Carola Barrientos; Bozem, Heiko; Brückner, Marlen; Clemen, Hans-Christian; Crewell, Susanne; Donth, Tobias; Dupuy, Regis; Ebell, Kerstin; Egerer, Ulrike; Engelmann, Ronny; Engler, Christa; Eppers, Oliver; Gehrmann, Martin; Gong, Xianda; Gottschalk, Matthias; Gourbeyre, Christophe; Griesche, Hannes; Hartmann, Jörg; Hartmann, Markus; Heinold, Bernd; Herber, Andreas; Herrmann, Hartmut; Heygster, Georg; Hoor, Peter; Jafariserajehlou, Soheila; Jäkel, Evelyn; Järvinen, Emma; Jourdan, Olivier; Kästner, Udo; Kecorius, Simonas; Knudsen, Erlend M.; Köllner, Franziska; Kretzschmar, Jan; Lelli, Luca; Leroy, Delphine; Maturilli, Marion; Mei, Linlu; Mertes, Stephan; Mioche, Guillaume; Neuber, Roland; Nicolaus, Marcel; Nomokonova, Tatiana; Notholt, Justus; Palm, Mathias; van Pinxteren, Manuela; Quaas, Johannes; Richter, Philipp; Ruiz-Donoso, Elena; Schäfer, Michael; Schmieder, Katja; Schnaiter, Martin; Schneider, Johannes; Schwarzenböck, Alfons; Seifert, Patric; Shupe, Matthew D.; Siebert, Holger; Spreen, Gunnar; Stapf, Johannes; Stratmann, Frank; Vogl, Teresa; Welti, André; Wex, Heike; Wiedensohler, Alfred; Zanatta, Marco; Zeppenfeld, Sebastian
    Clouds play an important role in Arctic amplification. This term represents the recently observed enhanced warming of the Arctic relative to the global increase of near-surface air temperature. However, there are still important knowledge gaps regarding the interplay between Arctic clouds and aerosol particles, and surface properties, as well as turbulent and radiative fluxes that inhibit accurate model simulations of clouds in the Arctic climate system. In an attempt to resolve this so-called Arctic cloud puzzle, two comprehensive and closely coordinated field studies were conducted: the Arctic Cloud Observations Using Airborne Measurements during Polar Day (ACLOUD) aircraft campaign and the Physical Feedbacks of Arctic Boundary Layer, Sea Ice, Cloud and Aerosol (PASCAL) ice breaker expedition. Both observational studies were performed in the framework of the German Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC) project. They took place in the vicinity of Svalbard, Norway, in May and June 2017. ACLOUD and PASCAL explored four pieces of the Arctic cloud puzzle: cloud properties, aerosol impact on clouds, atmospheric radiation, and turbulent dynamical processes. The two instrumented Polar 5 and Polar 6 aircraft; the icebreaker Research Vessel (R/V) Polarstern; an ice floe camp including an instrumented tethered balloon; and the permanent ground-based measurement station at Ny-Ålesund, Svalbard, were employed to observe Arctic low- and mid-level mixed-phase clouds and to investigate related atmospheric and surface processes. The Polar 5 aircraft served as a remote sensing observatory examining the clouds from above by downward-looking sensors; the Polar 6 aircraft operated as a flying in situ measurement laboratory sampling inside and below the clouds. Most of the collocated Polar 5/6 flights were conducted either above the R/V Polarstern or over the Ny-Ålesund station, both of which monitored the clouds from below using similar but upward-looking remote sensing techniques as the Polar 5 aircraft. Several of the flights were carried out underneath collocated satellite tracks. The paper motivates the scientific objectives of the ACLOUD/PASCAL observations and describes the measured quantities, retrieved parameters, and the applied complementary instrumentation. Furthermore, it discusses selected measurement results and poses critical research questions to be answered in future papers analyzing the data from the two field campaigns.