Search Results

Now showing 1 - 4 of 4
  • Item
    A local hybrid surrogate-based finite element tearing interconnecting dual-primal method for nonsmooth random partial differential equations
    (Chichester [u.a.] : Wiley, 2021) Eigel, Martin; Gruhlke, Robert
    A domain decomposition approach for high-dimensional random partial differential equations exploiting the localization of random parameters is presented. To obtain high efficiency, surrogate models in multielement representations in the parameter space are constructed locally when possible. The method makes use of a stochastic Galerkin finite element tearing interconnecting dual-primal formulation of the underlying problem with localized representations of involved input random fields. Each local parameter space associated to a subdomain is explored by a subdivision into regions where either the parametric surrogate accuracy can be trusted or where instead one has to resort to Monte Carlo. A heuristic adaptive algorithm carries out a problem-dependent hp-refinement in a stochastic multielement sense, anisotropically enlarging the trusted surrogate region as far as possible. This results in an efficient global parameter to solution sampling scheme making use of local parametric smoothness exploration for the surrogate construction. Adequately structured problems for this scheme occur naturally when uncertainties are defined on subdomains, for example, in a multiphysics setting, or when the Karhunen–Loève expansion of a random field can be localized. The efficiency of the proposed hybrid technique is assessed with numerical benchmark problems illustrating the identification of trusted (possibly higher order) surrogate regions and nontrusted sampling regions. © 2020 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.
  • Item
    Numerical upscaling of parametric microstructures in a possibilistic uncertainty framework with tensor trains
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Eigel, Martin; Gruhlke, Robert; Moser, Dieter
    We develop a new fuzzy arithmetic framework for efficient possibilistic uncertainty quantification. The considered application is an edge detection task with the goal to identify interfaces of blurred images. In our case, these represent realisations of composite materials with possibly very many inclusions. The proposed algorithm can be seen as computational homogenisation and results in a parameter dependent representation of composite structures. For this, many samples for a linear elasticity problem have to be computed, which is significantly sped up by a highly accurate low-rank tensor surrogate. To ensure the continuity of the underlying effective material tensor map, an appropriate diffeomorphism is constructed to generate a family of meshes reflecting the possible material realisations. In the application, the uncertainty model is propagated through distance maps with respect to consecutive symmetry class tensors. Additionally, the efficacy of the best/worst estimate analysis of the homogenisation map as a bound to the average displacement for chessboard like matrix composites with arbitrary star-shaped inclusions is demonstrated.
  • Item
    Local surrogate responses in the Schwarz alternating method for elastic problems on random voided domains
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Drieschner, Martin; Gruhlke, Robert; Petryna, Yuri; Eigel, Martin; Hömberg, Dietmar
    Imperfections and inaccuracies in real technical products often influence the mechanical behavior and the overall structural reliability. The prediction of real stress states and possibly resulting failure mechanisms is essential and a real challenge, e.g. in the design process. In this contribution, imperfections in elastic materials such as air voids in adhesive bonds between fiber-reinforced composites are investigated. They are modeled as arbitrarily shaped and positioned. The focus is on local displacement values as well as on associated stress concentrations caused by the imperfections. For this purpose, the resulting complex random one-scale finite element model is numerically solved by a new developed surrogate model using an overlapping domain decomposition scheme based on Schwarz alternating method. Here, the actual response of local subproblems associated with isolated material imperfections is determined by a single appropriate surrogate model, that allows for an accelerated propagation of randomness. The efficiency of the method is demonstrated for imperfections with elliptical and ellipsoidal shape in 2D and 3D and extended to arbitrarily shaped voids. For the latter one, a local surrogate model based on artificial neural networks (ANN) is constructed. Finally, a comparison to experimental results validates the numerical predictions for a real engineering problem.
  • Item
    Low-rank Wasserstein polynomial chaos expansions in the framework of optimal transport
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Gruhlke, Robert; Eigel, Martin
    A unsupervised learning approach for the computation of an explicit functional representation of a random vector Y is presented, which only relies on a finite set of samples with unknown distribution. Motivated by recent advances with computational optimal transport for estimating Wasserstein distances, we develop a new Wasserstein multi-element polynomial chaos expansion (WPCE). It relies on the minimization of a regularized empirical Wasserstein metric known as debiased Sinkhorn divergence. As a requirement for an efficient polynomial basis expansion, a suitable (minimal) stochastic coordinate system X has to be determined with the aim to identify ideally independent random variables. This approach generalizes representations through diffeomorphic transport maps to the case of non-continuous and non-injective model classes M with different input and output dimension, yielding the relation Y=M(X) in distribution. Moreover, since the used PCE grows exponentially in the number of random coordinates of X, we introduce an appropriate low-rank format given as stacks of tensor trains, which alleviates the curse of dimensionality, leading to only linear dependence on the input dimension. By the choice of the model class M and the smooth loss function, higher order optimization schemes become possible. It is shown that the relaxation to a discontinuous model class is necessary to explain multimodal distributions. Moreover, the proposed framework is applied to a numerical upscaling task, considering a computationally challenging microscopic random non-periodic composite material. This leads to tractable effective macroscopic random field in adopted stochastic coordinates.