Search Results

Now showing 1 - 2 of 2
  • Item
    Convergence bounds for empirical nonlinear least-squares
    (Les Ulis : EDP Sciences, 2022) Eigel, Martin; Schneider, Reinhold; Trunschke, Philipp
    We consider best approximation problems in a nonlinear subset ℳ of a Banach space of functions (𝒱,∥•∥). The norm is assumed to be a generalization of the L 2-norm for which only a weighted Monte Carlo estimate ∥•∥n can be computed. The objective is to obtain an approximation v ∈ ℳ of an unknown function u ∈ 𝒱 by minimizing the empirical norm ∥u − v∥n. We consider this problem for general nonlinear subsets and establish error bounds for the empirical best approximation error. Our results are based on a restricted isometry property (RIP) which holds in probability and is independent of the specified nonlinear least squares setting. Several model classes are examined and the analytical statements about the RIP are compared to existing sample complexity bounds from the literature. We find that for well-studied model classes our general bound is weaker but exhibits many of the same properties as these specialized bounds. Notably, we demonstrate the advantage of an optimal sampling density (as known for linear spaces) for sets of functions with sparse representations.
  • Item
    Adaptive stochastic Galerkin FEM for lognormal coefficients in hierarchical tensor representations
    (Berlin ; Heidelberg : Springer, 2020) Eigel, Martin; Marschall, Manuel; Pfeffer, Max; Schneider, Reinhold
    Stochastic Galerkin methods for non-affine coefficient representations are known to cause major difficulties from theoretical and numerical points of view. In this work, an adaptive Galerkin FE method for linear parametric PDEs with lognormal coefficients discretized in Hermite chaos polynomials is derived. It employs problem-adapted function spaces to ensure solvability of the variational formulation. The inherently high computational complexity of the parametric operator is made tractable by using hierarchical tensor representations. For this, a new tensor train format of the lognormal coefficient is derived and verified numerically. The central novelty is the derivation of a reliable residual-based a posteriori error estimator. This can be regarded as a unique feature of stochastic Galerkin methods. It allows for an adaptive algorithm to steer the refinements of the physical mesh and the anisotropic Wiener chaos polynomial degrees. For the evaluation of the error estimator to become feasible, a numerically efficient tensor format discretization is developed. Benchmark examples with unbounded lognormal coefficient fields illustrate the performance of the proposed Galerkin discretization and the fully adaptive algorithm.