Search Results

Now showing 1 - 2 of 2
  • Item
    CAMP@FLASH: an end-station for imaging, electron- and ion-spectroscopy, and pump–probe experiments at the FLASH free-electron laser
    (Chester : IUCr, 2018-8-2) Erk, Benjamin; Müller, Jan P.; Bomme, Cédric; Boll, Rebecca; Brenner, Günter; Chapman, Henry N.; Correa, Jonathan; Düsterer, Stefan; Dziarzhytski, Siarhei; Eisebitt, Stefan; Graafsma, Heinz; Grunewald, Sören; Gumprecht, Lars; Hartmann, Robert; Hauser, Günter; Keitel, Barbara; von Korff Schmising, Clemens; Kuhlmann, Marion; Manschwetus, Bastian; Mercadier, Laurent; Müller, Erland; Passow, Christopher; Plönjes, Elke; Ramm, Daniel; Rompotis, Dimitrios; Rudenko, Artem; Rupp, Daniela; Sauppe, Mario; Siewert, Frank; Schlosser, Dieter; Strüder, Lothar; Swiderski, Angad; Techert, Simone; Tiedtke, Kai; Tilp, Thomas; Treusch, Rolf; Schlichting, Ilme; Ullrich, Joachim; Moshammer, Robert; Möller, Thomas; Rolles, Daniel
    The non-monochromatic beamline BL1 at the FLASH free-electron laser facility at DESY was upgraded with new transport and focusing optics, and a new permanent end-station, CAMP, was installed. This multi-purpose instrument is optimized for electron- and ion-spectroscopy, imaging and pump–probe experiments at free-electron lasers. It can be equipped with various electron- and ion-spectrometers, along with large-area single-photon-counting pnCCD X-ray detectors, thus enabling a wide range of experiments from atomic, molecular, and cluster physics to material and energy science, chemistry and biology. Here, an overview of the layout, the beam transport and focusing capabilities, and the experimental possibilities of this new end-station are presented, as well as results from its commissioning.
  • Item
    Ultrafast Demagnetization Dominates Fluence Dependence of Magnetic Scattering at Co M Edges
    (College Park, Md. : APS, 2020) Schneider, Michael; Pfau, Bastian; Günther, Christian M.; von Korff Schmising, Clemens; Weder, David; Geilhufe, Jan; Perron, Jonathan; Capotondi, Flavio; Pedersoli, Emanuele; Manfredda, Michele; Hennecke, Martin; Vodungbo, Boris; Lüning, Jan; Eisebitt, Stefan
    We systematically study the fluence dependence of the resonant scattering cross-section from magnetic domains in Co/Pd-based multilayers. Samples are probed with single extreme ultraviolet (XUV) pulses of femtosecond duration tuned to the Co M3,2 absorption resonances using the FERMI@Elettra free-electron laser. We report quantitative data over 3 orders of magnitude in fluence, covering 16  mJ/cm2/pulse to 10 000  mJ/cm2/pulse with pulse lengths of 70 fs and 120 fs. A progressive quenching of the diffraction cross-section with fluence is observed. Compression of the same pulse energy into a shorter pulse—implying an increased XUV peak electric field—results in a reduced quenching of the resonant diffraction at the Co M3,2 edge. We conclude that the quenching effect observed for resonant scattering involving the short-lived Co 3p core vacancies is noncoherent in nature. This finding is in contrast to previous reports investigating resonant scattering involving the longer-lived Co 2p states, where stimulated emission has been found to be important. A phenomenological model based on XUV-induced ultrafast demagnetization is able to reproduce our entire set of experimental data and is found to be consistent with independent magneto-optical measurements of the demagnetization dynamics on the same samples.