Search Results

Now showing 1 - 3 of 3
  • Item
    Understanding the weather signal in national crop‐yield variability
    (Hoboken, NJ : Wiley, 2017) Frieler, Katja; Schauberger, Bernhard; Arneth, Almut; Balkovič, Juraj; Chryssanthacopoulos, James; Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Khabarov, Nikolay; Müller, Christoph; Olin, Stefan; Smith, Steven J.; Pugh, Thomas A.M.; Schaphoff, Sibyll; Schewe, Jacob; Schmid, Erwin; Warszawski, Lila; Levermann, Anders
    Year‐to‐year variations in crop yields can have major impacts on the livelihoods of subsistence farmers and may trigger significant global price fluctuations, with severe consequences for people in developing countries. Fluctuations can be induced by weather conditions, management decisions, weeds, diseases, and pests. Although an explicit quantification and deeper understanding of weather‐induced crop‐yield variability is essential for adaptation strategies, so far it has only been addressed by empirical models. Here, we provide conservative estimates of the fraction of reported national yield variabilities that can be attributed to weather by state‐of‐the‐art, process‐based crop model simulations. We find that observed weather variations can explain more than 50% of the variability in wheat yields in Australia, Canada, Spain, Hungary, and Romania. For maize, weather sensitivities exceed 50% in seven countries, including the United States. The explained variance exceeds 50% for rice in Japan and South Korea and for soy in Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water limitation is a major driver of the observed variations in most of these countries. Identifying the mechanisms leading to crop‐yield fluctuations is not only fundamental for dampening fluctuations, but is also important in the context of the debate on the attribution of loss and damage to climate change. Since process‐based crop models not only account for weather influences on crop yields, but also provide options to represent human‐management measures, they could become essential tools for differentiating these drivers, and for exploring options to reduce future yield fluctuations.
  • Item
    The GGCMI Phase 2 emulators: Global gridded crop model responses to changes in CO2, temperature, water, and nitrogen (version 1.0)
    (Katlenburg-Lindau : Copernicus, 2020) Franke, James A.; Müller, Christoph; Elliott, Joshua; Ruane, Alex C.; Jägermeyr, Jonas; Snyder, Abigail; Dury, Marie; Falloon, Pete D.; Folberth, Christian; François, Louis; Hank, Tobias; Izaurralde, R. Cesar; Jacquemin, Ingrid; Jones, Curtis; Li, Michelle; Liu, Wenfeng; Olin, Stefan; Phillips, Meridel; Pugh, Thomas A. M.; Reddy, Ashwan; Williams, Karina; Wang, Ziwei; Zabel, Florian; Moyer, Elisabeth J.
    Statistical emulation allows combining advantageous features of statistical and process-based crop models for understanding the effects of future climate changes on crop yields. We describe here the development of emulators for nine process-based crop models and five crops using output from the Global Gridded Model Intercomparison Project (GGCMI) Phase 2. The GGCMI Phase 2 experiment is designed with the explicit goal of producing a structured training dataset for emulator development that samples across four dimensions relevant to crop yields: Atmospheric carbon dioxide (CO2) concentrations, temperature, water supply, and nitrogen inputs (CTWN). Simulations are run under two different adaptation assumptions: That growing seasons shorten in warmer climates, and that cultivar choice allows growing seasons to remain fixed. The dataset allows emulating the climatological-mean yield response of all models with a simple polynomial in mean growing-season values. Climatological-mean yields are a central metric in climate change impact analysis; we show here that they can be captured without relying on interannual variations. In general, emulation errors are negligible relative to differences across crop models or even across climate model scenarios; errors become significant only in some marginal lands where crops are not currently grown. We demonstrate that the resulting GGCMI emulators can reproduce yields under realistic future climate simulations, even though the GGCMI Phase 2 dataset is constructed with uniform CTWN offsets, suggesting that the effects of changes in temperature and precipitation distributions are small relative to those of changing means. The resulting emulators therefore capture relevant crop model responses in a lightweight, computationally tractable form, providing a tool that can facilitate model comparison, diagnosis of interacting factors affecting yields, and integrated assessment of climate impacts. © 2020 EDP Sciences. All rights reserved.
  • Item
    Global Response Patterns of Major Rainfed Crops to Adaptation by Maintaining Current Growing Periods and Irrigation
    (Hoboken, NJ : Wiley-Blackwell, 2019) Minoli, Sara; Müller, Christoph; Elliott, Joshua; Ruane, Alex C.; Jägermeyr, Jonas; Zabel, Florian; Dury, Marie; Folberth, Christian; François, Louis; Hank, Tobias; Jacquemin, Ingrid; Liu, Wenfeng; Olin, Stefan; Pugh, Thomas A.M.
    Increasing temperature trends are expected to impact yields of major field crops by affecting various plant processes, such as phenology, growth, and evapotranspiration. However, future projections typically do not consider the effects of agronomic adaptation in farming practices. We use an ensemble of seven Global Gridded Crop Models to quantify the impacts and adaptation potential of field crops under increasing temperature up to 6 K, accounting for model uncertainty. We find that without adaptation, the dominant effect of temperature increase is to shorten the growing period and to reduce grain yields and production. We then test the potential of two agronomic measures to combat warming-induced yield reduction: (i) use of cultivars with adjusted phenology to regain the reference growing period duration and (ii) conversion of rainfed systems to irrigated ones in order to alleviate the negative temperature effects that are mediated by crop evapotranspiration. We find that cultivar adaptation can fully compensate global production losses up to 2 K of temperature increase, with larger potentials in continental and temperate regions. Irrigation could also compensate production losses, but its potential is highest in arid regions, where irrigation expansion would be constrained by water scarcity. Moreover, we discuss that irrigation is not a true adaptation measure but rather an intensification strategy, as it equally increases production under any temperature level. In the tropics, even when introducing both adapted cultivars and irrigation, crop production declines already at moderate warming, making adaptation particularly challenging in these areas. ©2019. The Authors.