Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

The Sunrise Mission

2010, Barthol, P., Gandorfer, A., Solanki, S.K., Schüssler, M., Chares, B., Curdt, W., Deutsch, W., Feller, A., Germerott, D., Grauf, B., Heerlein, K., Hirzberger, J., Kolleck, M., Meller, R., Müller, R., Riethmüller, T.L., Tomasch, G., Knölker, M., Lites, B.W., Card, G., Elmore, D., Fox, J., Lecinski, A., Nelson, P., Summers, R., Watt, A., Martínez Pillet, V., Bonet, J.A., Schmidt, W., Berkefeld, T., Title, A.M., Domingo, V., Gasent Blesa, J.L., del Toro, Iniesta, J.C., López Jiménez, A., Álvarez-Herrero, A., Sabau-Graziati, L., Widani, C., Haberler, P., Härtel, K., Kampf, D., Levin, T., Pérez Grande, I., Sanz-Andrés, A., Schmidt, E.

The first science flight of the balloon-borne Sunrise telescope took place in June 2009 from ESRANGE (near Kiruna/Sweden) to Somerset Island in northern Canada. We describe the scientific aims and mission concept of the project and give an overview and a description of the various hardware components: the 1-m main telescope with its postfocus science instruments (the UV filter imager SuFI and the imaging vector magnetograph IMaX) and support instruments (image stabilizing and light distribution system ISLiD and correlating wavefront sensor CWS), the optomechanical support structure and the instrument mounting concept, the gondola structure and the power, pointing, and telemetry systems, and the general electronics architecture. We also explain the optimization of the structural and thermal design of the complete payload. The preparations for the science flight are described, including AIV and ground calibration of the instruments. The course of events during the science flight is outlined, up to the recovery activities. Finally, the in-flight performance of the instrumentation is discussed. © 2010 The Author(s).

Loading...
Thumbnail Image
Item

Polarization Calibration of the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO)

2012, Schou, J., Borrero, J.M., Norton, A.A., Tomczyk, S., Elmore, D., Card, G.L.

As part of the overall ground-based calibration of the Helioseismic and Magnetic Imager (HMI) instrument an extensive set of polarimetric calibrations were performed. This paper describes the polarimetric design of the instrument, the test setup, the polarimetric model, the tests performed, and some results. It is demonstrated that HMI achieves an accuracy of 1% or better on the crosstalks between Q, U, and V and that our model can reproduce the intensities in our calibration sequences to about 0.4%. The amount of depolarization is negligible when the instrument is operated as intended which, combined with the flexibility of the polarimeter design, means that the polarimetric efficiency is excellent.