Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Few-cycle 65-µJ pulses at 11.4 µm for ultrafast nonlinear longwave-infrared spectroscopy

2022, Fuertjes, Pia, Bock, Martin, Grafenstein, Lorenz von, Ueberschaer, Dennis, Griebner, Uwe, Elsaesser, Thomas

Low-energy excitations can provide insight into the basic ultrafast nonequilibrium dynamics of condensed matter. High-energy femtosecond pulses in the long-wavelength infrared are required to induce such processes, and can be generated in an optical parametric chirped pulse amplification (OPCPA) system comprising three GaSe stages. A femtosecond Cr:ZnS laser serves as the front-end, providing the seed for the 2.0-µm pump and the 2.4-µm signal pulses without nonlinear conversion processes. The OPCPA system is pumped at 2.05 µm by a picosecond Ho:YLF regenerative amplifier at a 1-kHz repetition rate. The recompressed idler pulses at 11.4 µm have a duration of 185 fs and an unprecedented energy of 65 µJ, corresponding to a pump-to-idler conversion efficiency of 1.2%. Nonlinear transmission experiments in the range of the L2 infrared band of liquid water demonstrate the potential of the pulses for nonlinear vibrational spectroscopy of liquids and solids.

Loading...
Thumbnail Image
Item

Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources

2017, Holtz, Marcel, Hauf, Christoph, Weisshaupt, Jannick, Salvador, Antonio-Andres Hernandez, Woerner, Michael, Elsaesser, Thomas

Table-top laser-driven hard x-ray sources with kilohertz repetition rates are an attractive alternative to large-scale accelerator-based systems and have found widespread applications in x-ray studies of ultrafast structural dynamics. Hard x-ray pulses of 100 fs duration have been generated at the Cu Kα wavelength with a photon flux of up to 109 photons per pulse into the full solid angle, perfectly synchronized to the sub- 100-fs optical pulses from the driving laser system. Based on spontaneous x-ray emission, such sources display a particular noise behavior which impacts the sensitivity of x-ray diffraction experiments. We present a detailed analysis of the photon statistics and temporal fluctuations of the x-ray flux, together with experimental strategies to optimize the sensitivity of optical pump/x-ray probe experiments. We demonstrate measurements close to the shot-noise limit of the x-ray source.