Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Intercomparison of regional loss estimates from global synthetic tropical cyclone models

2022, Meiler, Simona, Vogt, Thomas, Bloemendaal, Nadia, Ciullo, Alessio, Lee, Chia-Ying, Camargo, Suzana J., Emanuel, Kerry, Bresch, David N.

Tropical cyclones (TCs) cause devastating damage to life and property. Historical TC data is scarce, complicating adequate TC risk assessments. Synthetic TC models are specifically designed to overcome this scarcity. While these models have been evaluated on their ability to simulate TC activity, no study to date has focused on model performance and applicability in TC risk assessments. This study performs the intercomparison of four different global-scale synthetic TC datasets in the impact space, comparing impact return period curves, probability of rare events, and hazard intensity distribution over land. We find that the model choice influences the costliest events, particularly in basins with limited TC activity. Modelled direct economic damages in the North Indian Ocean, for instance, range from 40 to 246 billion USD for the 100-yr event over the four hazard sets. We furthermore provide guidelines for the suitability of the different synthetic models for various research purposes.

Loading...
Thumbnail Image
Item

EUREC4A

2021, Stevens, Bjorn, Bony, Sandrine, Farrell, David, Ament, Felix, Blyth, Alan, Fairall, Christopher, Karstensen, Johannes, Quinn, Patricia K., Speich, Sabrina, Acquistapace, Claudia, Aemisegger, Franziska, Crewell, Susanne, Cronin, Timothy, Cui, Zhiqiang, Cuypers, Yannis, Daley, Alton, Damerell, Gillian M., Dauhut, Thibaut, Deneke, Hartwig, Desbios, Jean-Philippe, Dörner, Steffen, Albright, Anna Lea, Donner, Sebastian, Douet, Vincent, Drushka, Kyla, Dütsch, Marina, Ehrlich, André, Emanuel, Kerry, Emmanouilidis, Alexandros, Etienne, Jean-Claude, Etienne-Leblanc, Sheryl, Faure, Ghislain, Bellenger, Hugo, Feingold, Graham, Ferrero, Luca, Fix, Andreas, Flamant, Cyrille, Flatau, Piotr Jacek, Foltz, Gregory R., Forster, Linda, Furtuna, Iulian, Gadian, Alan, Galewsky, Joseph, Bodenschatz, Eberhard, Gallagher, Martin, Gallimore, Peter, Gaston, Cassandra, Gentemann, Chelle, Geyskens, Nicolas, Giez, Andreas, Gollop, John, Gouirand, Isabelle, Gourbeyre, Christophe, de Graaf, Dörte, Caesar, Kathy-Ann, de Groot, Geiske E., Grosz, Robert, Güttler, Johannes, Gutleben, Manuel, Hall, Kashawn, Harris, George, Helfer, Kevin C., Henze, Dean, Herbert, Calvert, Holanda, Bruna, Chewitt-Lucas, Rebecca, Ibanez-Landeta, Antonio, Intrieri, Janet, Iyer, Suneil, Julien, Fabrice, Kalesse, Heike, Kazil, Jan, Kellman, Alexander, Kidane, Abiel T., Kirchner, Ulrike, Klingebiel, Marcus, de Boer, Gijs, Körner, Mareike, Kremper, Leslie Ann, Kretzschmar, Jan, Krüger, Ovid, Kumala, Wojciech, Kurz, Armin, L'Hégaret, Pierre, Labaste, Matthieu, Lachlan-Cope, Tom, Laing, Arlene, Delanoë, Julien, Landschützer, Peter, Lang, Theresa, Lange, Diego, Lange, Ingo, Laplace, Clément, Lavik, Gauke, Laxenaire, Rémi, Le Bihan, Caroline, Leandro, Mason, Lefevre, Nathalie, Denby, Leif, Lena, Marius, Lenschow, Donald, Li, Qiang, Lloyd, Gary, Los, Sebastian, Losi, Niccolò, Lovell, Oscar, Luneau, Christopher, Makuch, Przemyslaw, Malinowski, Szymon, Ewald, Florian, Manta, Gaston, Marinou, Eleni, Marsden, Nicholas, Masson, Sebastien, Maury, Nicolas, Mayer, Bernhard, Mayers-Als, Margarette, Mazel, Christophe, McGeary, Wayne, McWilliams, James C., Fildier, Benjamin, Mech, Mario, Mehlmann, Melina, Meroni, Agostino Niyonkuru, Mieslinger, Theresa, Minikin, Andreas, Minnett, Peter, Möller, Gregor, Morfa Avalos, Yanmichel, Muller, Caroline, Musat, Ionela, Forde, Marvin, Napoli, Anna, Neuberger, Almuth, Noisel, Christophe, Noone, David, Nordsiek, Freja, Nowak, Jakub L., Oswald, Lothar, Parker, Douglas J., Peck, Carolyn, Person, Renaud, George, Geet, Philippi, Miriam, Plueddemann, Albert, Pöhlker, Christopher, Pörtge, Veronika, Pöschl, Ulrich, Pologne, Lawrence, Posyniak, Michał, Prange, Marc, Quiñones Meléndez, Estefanía, Radtke, Jule, Gross, Silke, Ramage, Karim, Reimann, Jens, Renault, Lionel, Reus, Klaus, Reyes, Ashford, Ribbe, Joachim, Ringel, Maximilian, Ritschel, Markus, Rocha, Cesar B., Rochetin, Nicolas, Hagen, Martin, Röttenbacher, Johannes, Rollo, Callum, Royer, Haley, Sadoulet, Pauline, Saffin, Leo, Sandiford, Sanola, Sandu, Irina, Schäfer, Michael, Schemann, Vera, Schirmacher, Imke, Hausold, Andrea, Schlenczek, Oliver, Schmidt, Jerome, Schröder, Marcel, Schwarzenboeck, Alfons, Sealy, Andrea, Senff, Christoph J., Serikov, Ilya, Shohan, Samkeyat, Siddle, Elizabeth, Smirnov, Alexander, Heywood, Karen J., Späth, Florian, Spooner, Branden, Stolla, M. Katharina, Szkółka, Wojciech, de Szoeke, Simon P., Tarot, Stéphane, Tetoni, Eleni, Thompson, Elizabeth, Thomson, Jim, Tomassini, Lorenzo, Hirsch, Lutz, Totems, Julien, Ubele, Alma Anna, Villiger, Leonie, von Arx, Jan, Wagner, Thomas, Walther, Andi, Webber, Ben, Wendisch, Manfred, Whitehall, Shanice, Wiltshire, Anton, Jacob, Marek, Wing, Allison A., Wirth, Martin, Wiskandt, Jonathan, Wolf, Kevin, Worbes, Ludwig, Wright, Ethan, Wulfmeyer, Volker, Young, Shanea, Zhang, Chidong, Zhang, Dongxiao, Jansen, Friedhelm, Ziemen, Florian, Zinner, Tobias, Zöger, Martin, Kinne, Stefan, Klocke, Daniel, Kölling, Tobias, Konow, Heike, Lothon, Marie, Mohr, Wiebke, Naumann, Ann Kristin, Nuijens, Louise, Olivier, Léa, Pincus, Robert, Pöhlker, Mira, Reverdin, Gilles, Roberts, Gregory, Schnitt, Sabrina, Schulz, Hauke, Siebesma, A. Pier, Stephan, Claudia Christine, Sullivan, Peter, Touzé-Peiffer, Ludovic, Vial, Jessica, Vogel, Raphaela, Zuidema, Paquita, Alexander, Nicola, Alves, Lyndon, Arixi, Sophian, Asmath, Hamish, Bagheri, Gholamhossein, Baier, Katharina, Bailey, Adriana, Baranowski, Dariusz, Baron, Alexandre, Barrau, Sébastien, Barrett, Paul A., Batier, Frédéric, Behrendt, Andreas, Bendinger, Arne, Beucher, Florent, Bigorre, Sebastien, Blades, Edmund, Blossey, Peter, Bock, Olivier, Böing, Steven, Bosser, Pierre, Bourras, Denis, Bouruet-Aubertot, Pascale, Bower, Keith, Branellec, Pierre, Branger, Hubert, Brennek, Michal, Brewer, Alan, Brilouet, Pierre-Etienne, Brügmann, Björn, Buehler, Stefan A., Burke, Elmo, Burton, Ralph, Calmer, Radiance, Canonici, Jean-Christophe, Carton, Xavier, Cato Jr., Gregory, Charles, Jude Andre, Chazette, Patrick, Chen, Yanxu, Chilinski, Michal T., Choularton, Thomas, Chuang, Patrick, Clarke, Shamal, Coe, Hugh, Cornet, Céline, Coutris, Pierre, Couvreux, Fleur

The science guiding the EUREC4A campaign and its measurements is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EUREC4A marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EUREC4A explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EUREC4A's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement.

Loading...
Thumbnail Image
Item

Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales

2020, Lange, Stefan, Volkholz, Jan, Geiger, Tobias, Zhao, Fang, Vega, Iliusi, Veldkamp, Ted, Reyer, Christopher P.O., Warszawski, Lila, Huber, Veronika, Jägermeyr, Jonas, Schewe, Jacob, Bresch, David N., Büchner, Matthias, Chang, Jinfeng, Ciais, Philippe, Dury, Marie, Emanuel, Kerry, Folberth, Christian, Gerten, Dieter, Gosling, Simon N., Grillakis, Manolis, Hanasaki, Naota, Henrot, Alexandra-Jane, Hickler, Thomas, Honda, Yasushi, Ito, Akihiko, Khabarov, Nikolay, Koutroulis, Aristeidis, Liu, Wenfeng, Müller, Christoph, Nishina, Kazuya, Ostberg, Sebastian, Müller Schmied, Hannes, Seneviratne, Sonia I., Stacke, Tobias, Steinkamp, Jörg, Thiery, Wim, Wada, Yoshihide, Willner, Sven, Yang, Hong, Yoshikawa, Minoru, Yue, Chao, Frieler, Katja

The extent and impact of climate-related extreme events depend on the underlying meteorological, hydrological, or climatological drivers as well as on human factors such as land use or population density. Here we quantify the pure effect of historical and future climate change on the exposure of land and population to extreme climate impact events using an unprecedentedly large ensemble of harmonized climate impact simulations from the Inter-Sectoral Impact Model Intercomparison Project phase 2b. Our results indicate that global warming has already more than doubled both the global land area and the global population annually exposed to all six categories of extreme events considered: river floods, tropical cyclones, crop failure, wildfires, droughts, and heatwaves. Global warming of 2°C relative to preindustrial conditions is projected to lead to a more than fivefold increase in cross-category aggregate exposure globally. Changes in exposure are unevenly distributed, with tropical and subtropical regions facing larger increases than higher latitudes. The largest increases in overall exposure are projected for the population of South Asia. ©2020. The Authors.

Loading...
Thumbnail Image
Item

Assessing the impacts of 1.5 °C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b)

2017, Frieler, Katja, Lange, Stefan, Piontek, Franziska, Reyer, Christopher P.O., Schewe, Jacob, Warszawski, Lila, Zhao, Fang, Chini, Louise, Denvil, Sebastien, Emanuel, Kerry, Geiger, Tobias, Halladay, Kate, Hurtt, George, Mengel, Matthias, Murakami, Daisuke, Ostberg, Sebastian, Popp, Alexander, Riva, Riccardo, Stevanovic, Miodrag, Suzuki, Tatsuo, Volkholz, Jan, Burke, Eleanor, Ciais, Philippe, Ebi, Kristie, Eddy, Tyler D., Elliott, Joshua, Galbraith, Eric, Gosling, Simon N., Hattermann, Fred, Hickler, Thomas, Hinkel, Jochen, Hof, Christian, Huber, Veronika, Jägermeyr, Jonas, Krysanova, Valentina, Marcé, Rafael, Müller Schmied, Hannes, Mouratiadou, Ioanna, Pierson, Don, Tittensor, Derek P., Vautard, Robert, van Vliet, Michelle, Biber, Matthias F., Betts, Richard A., Bodirsky, Benjamin Leon, Deryng, Delphine, Frolking, Steve, Jones, Chris D., Lotze, Heike K., Lotze-Campen, Hermann, Sahajpal, Ritvik, Thonicke, Kirsten, Tian, Hanqin, Yamagata, Yoshiki

In Paris, France, December 2015, the Conference of the Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the Intergovernmental Panel on Climate Change (IPCC) to provide a "special report in 2018 on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways". In Nairobi, Kenya, April 2016, the IPCC panel accepted the invitation. Here we describe the response devised within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to provide tailored, cross-sectorally consistent impact projections to broaden the scientific basis for the report. The simulation protocol is designed to allow for (1) separation of the impacts of historical warming starting from pre-industrial conditions from impacts of other drivers such as historical land-use changes (based on pre-industrial and historical impact model simulations); (2) quantification of the impacts of additional warming up to 1.5°C, including a potential overshoot and long-term impacts up to 2299, and comparison to higher levels of global mean temperature change (based on the low-emissions Representative Concentration Pathway RCP2.6 and a no-mitigation pathway RCP6.0) with socio-economic conditions fixed at 2005 levels; and (3) assessment of the climate effects based on the same climate scenarios while accounting for simultaneous changes in socio-economic conditions following the middle-of-the-road Shared Socioeconomic Pathway (SSP2, Fricko et al., 2016) and in particular differential bioenergy requirements associated with the transformation of the energy system to comply with RCP2.6 compared to RCP6.0. With the aim of providing the scientific basis for an aggregation of impacts across sectors and analysis of cross-sectoral interactions that may dampen or amplify sectoral impacts, the protocol is designed to facilitate consistent impact projections from a range of impact models across different sectors (global and regional hydrology, lakes, global crops, global vegetation, regional forests, global and regional marine ecosystems and fisheries, global and regional coastal infrastructure, energy supply and demand, temperature-related mortality, and global terrestrial biodiversity).