Search Results

Now showing 1 - 4 of 4
  • Item
    Concerted measurements of free amino acids at the Cabo Verde islands: high enrichments in submicron sea spray aerosol particles and cloud droplets
    (Katlenburg-Lindau : European Geosciences Union, 2021) Triesch, Nadja; van Pinxteren, Manuela; Engel, Anja; Herrmann, Hartmut
    Measurements of free amino acids (FAAs) in the marine environment to elucidate their transfer from the ocean into the atmosphere, to marine aerosol particles and to clouds, were performed at the MarParCloud (marine biological production, organic aerosol particles and marine clouds: a process chain) campaign at the Cabo Verde islands in autumn 2017. According to physical and chemical specifications such as the behavior of air masses, particulate MSA concentrations and MSA=sulfate ratios, as well as particulate mass concentrations of dust tracers, aerosol particles predominantly of marine origin with low to medium dust influences were observed. FAAs were investigated in different compartments: they were examined in two types of seawater underlying water (ULW) and in the sea surface microlayer (SML), as well as in ambient marine size-segregated aerosol particle samples at two heights (ground height based at the Cape Verde Atmospheric Observatory, CVAO, and at 744m height on Mt. Verde) and in cloud water using concerted measurements. The ΣFAA concentration in the SML varied between 0.13 and 3.64 μmol L-1, whereas it was between 0.01 and 1.10 μmol L-1in the ULW; also, a strong enrichment of ΣFAA (EFSML: 1.1-298.4, average of 57.2) was found in the SML. In the submicron (0.05-1.2 μm) aerosol particles at the CVAO, the composition of FAAs was more complex, and higher atmospheric concentrations of ΣFAA (up to 6.3 ngm-3) compared to the supermicron (1.2-10 μm) aerosol particles (maximum of 0.5 ngm-3) were observed. The total ΣFAA concentration (PM10) was between 1.8 and 6.8 ngm-3and tended to increase during the campaign. Averaged ΣFAA concentrations in the aerosol particles on Mt. Verde were lower (submicron: 1.5 ngm-3; supermicron: 1.2 ngm-3) compared to the CVAO. A similar contribution percentage of ΣFAA to dissolved organic carbon (DOC) in the seawater (up to 7.6 %) and to water-soluble organic carbon (WSOC) in the submicron aerosol particles (up to 5.3 %) indicated a related transfer process of FAAs and DOC in the marine environment. Considering solely ocean-atmosphere transfer and neglecting atmospheric processing, high FAA enrichment factors were found in both aerosol particles in the submicron range (EFaer(ΣFAA):2×103-6×103) and medium enrichment factors in the supermicron range (EFaer(ΣFAA):1×101-3×101). In addition, indications for a biogenic FAA formation were observed. Furthermore, one striking finding was the high and varying FAA cloud water concentration (11.2-489.9 ngm-3), as well as enrichments (EFCW:4×103and 1×104compared to the SML and ULW, respectively), which were reported here for the first time. The abundance of inorganic marine tracers (sodium, methanesulfonic acid) in cloud water suggests an influence of oceanic sources on marine clouds. Finally, the varying composition of the FAAs in the different matrices shows that their abundance and ocean- atmosphere transfer are influenced by additional biotic and abiotic formation and degradation processes. Simple physicochemical parameters (e.g., surface activity) are not sufficient to describe the concentration and enrichments of the FAAs in the marine environment. For a precise representation in organic matter (OM) transfer models, further studies. © 2021 American Institute of Physics Inc.. All rights reserved.
  • Item
    High number concentrations of transparent exopolymer particles in ambient aerosol particles and cloud water – a case study at the tropical Atlantic Ocean
    (Katlenburg-Lindau : EGU, 2022) van Pinxteren, Manuela; Robinson, Tiera-Brandy; Zeppenfeld, Sebastian; Gong, Xianda; Bahlmann, Enno; Fomba, Khanneh Wadinga; Triesch, Nadja; Stratmann, Frank; Wurl, Oliver; Engel, Anja; Wex, Heike; Herrmann, Hartmut
    Transparent exopolymer particles (TEPs) exhibit the properties of gels and are ubiquitously found in the world oceans. TEPs may enter the atmosphere as part of sea-spray aerosol. Here, we report number concentrations of TEPs with a diameter >4.5 μm, hence covering a part of the supermicron particle range, in ambient aerosol and cloud water samples from the tropical Atlantic Ocean as well as in generated aerosol particles using a plunging waterfall tank that was filled with the ambient seawater. The ambient TEP concentrations ranged between 7×102 and 3×104 #TEP m-3 in the aerosol particles and correlations with sodium (Na+) and calcium (Ca2+) (R2=0.5) suggested some contribution via bubble bursting. Cloud water TEP concentrations were between 4×106 and 9×106 #TEP L-1 and, according to the measured cloud liquid water content, corresponding to equivalent air concentrations of 2-4 × 103 #TEP m-3. Based on Na+ concentrations in seawater and in the atmosphere, the enrichment factors for TEPs in the atmosphere were calculated. The tank-generated TEPs were enriched by a factor of 50 compared with seawater and, therefore, in-line with published enrichment factors for supermicron organic matter in general and TEPs specifically. TEP enrichment in the ambient atmosphere was on average 1×103 in cloud water and 9×103 in ambient aerosol particles and therefore about two orders of magnitude higher than the corresponding enrichment from the tank study. Such high enrichment of supermicron particulate organic constituents in the atmosphere is uncommon and we propose that atmospheric TEP concentrations resulted from a combination of enrichment during bubble bursting transfer from the ocean and a secondary TEP in-situ formation in atmospheric phases. Abiotic in-situ formation might have occurred from aqueous reactions of dissolved organic precursors that were present in particle and cloud water samples, whereas biotic formation involves bacteria, which were abundant in the cloud water samples. The ambient TEP number concentrations were two orders of magnitude higher than recently reported ice nucleating particle (INP) concentrations measured at the same location. As TEPs likely possess good properties to act as INPs, in future experiments it is worth studying if a certain part of TEPs contributes a fraction of the biogenic INP population.
  • Item
    The ocean's vital skin: Toward an integrated understanding of the sea surface microlayer
    (Lausanne : Frontiers Media, 2017) Engel, Anja; Bange, Hermann W.; Cunliffe, Michael; Burrows, Susannah M.; Friedrichs, Gernot; Galgani, Luisa; Herrmann, Hartmut; Hertkorn, Norbert; Johnson, Martin; Liss, Peter S.; Quinn, Patricia K.; Schartau, Markus; Soloviev, Alexander; Stolle, Christian; Upstill-Goddard, Robert C.; van Pinxteren, Manuela; Zäncker, Birthe
    Despite the huge extent of the ocean's surface, until now relatively little attention has been paid to the sea surface microlayer (SML) as the ultimate interface where heat, momentum and mass exchange between the ocean and the atmosphere takes place. Via the SML, large-scale environmental changes in the ocean such as warming, acidification, deoxygenation, and eutrophication potentially influence cloud formation, precipitation, and the global radiation balance. Due to the deep connectivity between biological, chemical, and physical processes, studies of the SML may reveal multiple sensitivities to global and regional changes. Understanding the processes at the ocean's surface, in particular involving the SML as an important and determinant interface, could therefore provide an essential contribution to the reduction of uncertainties regarding ocean-climate feedbacks. This review identifies gaps in our current knowledge of the SML and highlights a need to develop a holistic and mechanistic understanding of the diverse biological, chemical, and physical processes occurring at the ocean-atmosphere interface. We advocate the development of strong interdisciplinary expertise and collaboration in order to bridge between ocean and atmospheric sciences. Although this will pose significant methodological challenges, such an initiative would represent a new role model for interdisciplinary research in Earth System sciences.
  • Item
    A protocol for quantifying mono- and polysaccharides in seawater and related saline matrices by electro-dialysis (ED) – combined with HPAEC-PAD
    (Katlenburg-Lindau : Copernicus Publ., 2020) Zeppenfeld, Sebastian; van Pinxteren, Manuela; Engel, Anja; Herrmann, Hartmut
    An optimized method is presented to determine dissolved free (DFCHO) and dissolved combined carbohydrates (DCCHO) in saline matrices, such as oceanic seawater, Arctic ice core samples or brine using a combination of a desalination with electro-dialysis (ED) and high-performance anion exchange chromatography coupled to pulsed amperometric detection (HPAEC-PAD). Free neutral sugars, such as glucose and galactose, were found with 95 %–98 % recovery rates. Free amino sugars and free uronic acids were strongly depleted during ED at pH=8, but an adjustment of the pH could result in higher recoveries (58 %–59 % for amino sugars at pH=11; 45 %–49 % for uronic acids at pH=1.5). The applicability of this method for the analysis of DCCHO was evaluated with standard solutions and seawater samples compared with another established desalination method using membrane dialysis. DFCHO in field samples from different regions on Earth ranged between 11 and 118 nM and DCCHO between 260 and 1410 nM. This novel method has the potential to contribute to a better understanding of biogeochemical processes in the oceans and sea–air transfer processes of organic matter into the atmosphere in future studies.